1.6. Tensor internals

François Fleuret

https://fleuret.org/ee559/

May 16, 2020
A tensor is a view of a [part of a] storage, which is a low-level 1d vector.

```python
>>> x = torch.zeros(2, 4)
>>> x.storage()
  0.0
  0.0
  0.0
  0.0
  0.0
  0.0
  0.0
  0.0
  0.0
  0.0
  0.0
  0.0

[torch.FloatStorage of size 8]
>>> q = x.storage()
>>> q[4] = 1.0
>>> x
tensor([[ 0.,  0.,  0.,  0.],
        [ 1.,  0.,  0.,  0.]])
```
Multiple tensors can share the same storage. It happens when using operations such as \texttt{view()}, \texttt{expand()} or \texttt{transpose()}.

```python
>>> y = x.view(2, 2, 2)
>>> y

\texttt{tensor([[ 0.,  0.],
                 [ 0.,  0.]],

                 [[ 1.,  0.],
                 [ 0.,  0.]]))}

>>> y[1, 1, 0] = 7.0
```
The first coefficient of a tensor is the one at `storage_offset()` in `storage()`.
The first coefficient of a tensor is the one at `storage_offset()` in `storage()`.

Incrementing index k by 1 move by `stride(k)` elements in the storage.
The first coefficient of a tensor is the one at `storage_offset()` in `storage()`.

Incrementing index \(k \) by 1 move by `stride(k)` elements in the storage.

```python
>>> q = torch.arange(0, 20).storage()
>>> x = torch.empty(0).set_(q, storage_offset = 5, size = (3, 2), stride = (4, 1))
```

```python
>>> x
```

```python
tensor([[ 5.,  6.],
        [ 9., 10.],
        [13., 14.]])
```
The first coefficient of a tensor is the one at `storage_offset()` in `storage()`.

Incrementing index k by 1 move by `stride(k)` elements in the storage.

```python
>>> q = torch.arange(0, 20).storage()
>>> x = torch.empty(0).set_(q, storage_offset = 5, size = (3, 2), stride = (4, 1))
>>> x
tensor([[ 5.,  6.],
         [ 9., 10.],
         [13., 14.]])
```

$q =$

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
</table>

Fran¸cois Fleuret EE-559 – Deep learning / 1.6. Tensor internals
The first coefficient of a tensor is the one at `storage_offset()` in `storage()`.

Incrementing index k by 1 move by `stride(k)` elements in the storage.

```python
>>> q = torch.arange(0, 20).storage()
>>> x = torch.empty(0).set_(q, storage_offset = 5, size = (3, 2), stride = (4, 1))
>>> x
```
```
tensor([[ 5.,  6.],
        [ 9., 10.],
        [13., 14.]])
```
The first coefficient of a tensor is the one at `storage_offset()` in `storage()`.

Incrementing index \(k \) by 1 move by `stride(k)` elements in the storage.

```python
>>> q = torch.arange(0, 20).storage()
>>> x = torch.empty(0).set_(q, storage_offset = 5, size = (3, 2), stride = (4, 1))
>>> x
```
```
tensor([[ 5.,  6.],
         [ 9., 10.],
         [13., 14.]])
```
The first coefficient of a tensor is the one at `storage_offset()` in `storage()`.

Incrementing index \(k \) by 1 move by \(\text{stride}(k) \) elements in the storage.

```python
>>> q = torch.arange(0, 20).storage()
>>> x = torch.empty(0).set_(q, storage_offset = 5, size = (3, 2), stride = (4, 1))
>>> x
tensor([[ 5.,  6.],
         [ 9., 10.],
         [13., 14.]])
```
The first coefficient of a tensor is the one at `storage_offset()` in `storage()`.

Incrementing index k by 1 move by `stride(k)` elements in the storage.

```python
>>> q = torch.arange(0, 20).storage()
>>> x = torch.empty(0).set_(q, storage_offset = 5, size = (3, 2), stride = (4, 1))
>>> x
tensor([[ 5.,  6.],
        [ 9., 10.],
        [13., 14.]])
```
We can explicitly create different “views” of the same storage

```python
>>> n = torch.linspace(1, 4, 4)
>>> n
tensor([ 1., 2., 3., 4.])
>>> torch.tensor(0.).set_(n.storage(), 1, (3, 3), (0, 1))
tensor([[ 2., 3., 4.],
        [ 2., 3., 4.],
        [ 2., 3., 4.]])
>>> torch.tensor(0.).set_(n.storage(), 1, (2, 4), (1, 0))
tensor([[ 2., 2., 2., 2.],
        [ 3., 3., 3., 3.]])
```
We can explicitly create different “views” of the same storage

```python
>>> n = torch.linspace(1, 4, 4)
>>> n
tensor([ 1., 2., 3., 4.])
>>> torch.tensor(0.).set_(n.storage(), 1, (3, 3), (0, 1))
tensor([[ 2., 3., 4.],
        [ 2., 3., 4.],
        [ 2., 3., 4.]])
>>> torch.tensor(0.).set_(n.storage(), 1, (2, 4), (1, 0))
tensor([[ 2., 2., 2., 2.],
        [ 3., 3., 3., 3.]])
```

This is in particular how transpositions and broadcasting are implemented.

```python
>>> x = torch.empty(100, 100)
>>> x.stride()
(100, 1)
>>> y = x.t()
>>> y.stride()
(1, 100)
```
This organization explains the following (maybe surprising) error

```python
>>> x = torch.empty(100, 100)
>>> x.t().view(-1)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
RuntimeError: invalid argument 2: view size is not compatible with input tensor's size and stride (at least one dimension spans across two contiguous subspaces). Call .contiguous() before .view()
```

`x.t()` shares `x`'s storage and cannot be “flattened” to 1d.
This organization explains the following (maybe surprising) error

```python
>>> x = torch.empty(100, 100)
>>> x.t().view(-1)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
RuntimeError: invalid argument 2: view size is not compatible with input tensor's size and stride (at least one dimension spans across two contiguous subspaces). Call .contiguous() before .view()
```

`x.t()` shares `x`'s storage and cannot be “flattened” to 1d.

This can be fixed with `contiguous()`, which returns a contiguous version of the tensor, **making a copy if needed.**

The function `reshape()` combines `view()` and `contiguous()`.
The end