EE-559 – Deep learning

1.5. High dimension tensors

François Fleuret
https://fleuret.org/ee559/
May 16, 2020
A tensor can be of several types:

- `torch.float16`, `torch.float32`, `torch.float64`,
- `torch.uint8`,
- `torch.int8`, `torch.int16`, `torch.int32`, `torch.int64`

and can be located either in the CPU’s or in a GPU’s memory.

Operations with tensors stored in a certain device’s memory are done by that device. We will come back to that later.
>>> x = torch.zeros(1, 3)
>>> x.dtype, x.device
(torch.float32, device(type='cpu'))
>>> x = x.long()
>>> x.dtype, x.device
(torch.int64, device(type='cpu'))
>>> x = x.to('cuda')
>>> x.dtype, x.device
(torch.int64, device(type='cuda', index=0))
2d tensor (e.g. grayscale image)
3d tensor (e.g. rgb image)
4d tensor (e.g. sequence of rgb images)
Here are some examples from the vast library of tensor operations:

Creation

- `torch.empty(*size, ...)`
- `torch.zeros(*size, ...)`
- `torch.full(size, value, ...)`
- `torch.tensor(sequence, ...)`
- `torch.eye(n, ...)`
- `torch.from_numpy(ndarray)`

Indexing, Slicing, Joining, Mutating

- `torch.Tensor.view(*size)`
- `torch.cat(inputs, dimension=0)`
- `torch.chunk(tensor, nb_chunks, dim=0)`
- `torch.split(tensor, split_size, dim=0)`
- `torch.index_select(input, dim, index, out=None)`
- `torch.t(input, out=None)`
- `torch.transpose(input, dim0, dim1, out=None)`

Filling

- `Tensor.fill_(value)`
- `torch.bernoulli_(proba)`
- `torch.normal_([mu, [std]])`
Pointwise math

- torch.abs(input, out=None)
- torch.add()
- torch.cos(input, out=None)
- torch.sigmoid(input, out=None)
- (+ many operators)

Math reduction

- torch.dist(input, other, p=2, out=None)
- torch.mean()
- torch.norm()
- torch.std()
- torch.sum()

BLAS and LAPACK Operations

- torch.eig(a, eigenvectors=False, out=None)
- torch.lstsq(B, A, out=None)
- torch.inverse(input, out=None)
- torch.mm(mat1, mat2, out=None)
- torch.mv(mat, vec, out=None)
$$x = \text{torch.tensor}([[1, 3, 0], [2, 4, 6]])$$

$$x.t()$$
```python
x = torch.tensor([[ 1, 3, 0 ],
                  [ 2, 4, 6 ]])
x.view(-1)
```
\begin{align*}
x &= \text{torch.tensor}([[1, 3, 0], \\
&\quad [2, 4, 6]]) \\
x &= x.view(3, -1)
\end{align*}
$$x = \text{torch.tensor}([[1, 3, 0],
\quad [2, 4, 6]])$$

$$x[:, 1:3]$$

$$x[:, 1:3]$$
\[
x = \text{torch.tensor}\left(\begin{bmatrix} 1 & 3 & 0 \\ 2 & 4 & 6 \end{bmatrix}\right)
\]

\[
x.\text{view}(1, 2, 3).\text{expand}(3, 2, 3)
\]
\[
x = \text{torch.tensor}([[[1, 2, 1],
 [2, 1, 2]],
 [[3, 0, 3],
 [0, 3, 0]]]])
\]

\[
x[0:1, :, :]
\]
\[
x = \text{torch.tensor}(\begin{bmatrix}
1 & 2 & 1 \\
2 & 1 & 2 \\
3 & 0 & 3 \\
0 & 3 & 0 \\
\end{bmatrix})
\]

\[x[:, :, 0:2]
\]

\[x[:, :, 0:2]
\]
\[
x = \text{torch.tensor}([[[1, 2, 1],
 [2, 1, 2]],
 [[3, 0, 3],
 [0, 3, 0]]]
])
\]

\[
x.\text{transpose}(0, 1)
\]
\[x = \text{torch.tensor}([[[1, 2, 1],
 [2, 1, 2]],
 [[3, 0, 3],
 [0, 3, 0]]]) \]
\[
x = \text{torch.tensor}([\begin{bmatrix}
1, 2, 1 \\
2, 1, 2 \\
3, 0, 3 \\
0, 3, 0
\end{bmatrix}])
\]

\[\text{x.transpose}(1, 2)\]
PyTorch offers simple interfaces to standard image data-bases.

```python
import torch, torchvision
cifar = torchvision.datasets.CIFAR10('./cifar10/', train = True, download = True)
x = torch.from_numpy(cifar.data).permute(0, 3, 1, 2).float() / 255
print(x.dtype, x.size(), x.min().item(), x.max().item())
```

prints
```
Files already downloaded and verified
torch.float32 torch.Size([50000, 3, 32, 32]) 0.0 1.0
```

PyTorch offers simple interfaces to standard image data-bases.

```python
import torch, torchvision
cifar = torchvision.datasets.CIFAR10('./cifar10/', train = True, download = True)
x = torch.from_numpy(cifar.data).permute(0, 3, 1, 2).float() / 255
print(x.dtype, x.size(), x.min().item(), x.max().item())

prints

Files already downloaded and verified
torch.float32 torch.Size([50000, 3, 32, 32]) 0.0 1.0
PyTorch offers simple interfaces to standard image data-bases.

```python
import torch, torchvision
cifar = torchvision.datasets.CIFAR10('./cifar10/', train = True, download = True)
x = torch.from_numpy(cifar.data).permute(0, 3, 1, 2).float() / 255
print(x.dtype, x.size(), x.min().item(), x.max().item())
```

prints

```
Files already downloaded and verified
torch.float32 torch.Size([50000, 3, 32, 32]) 0.0 1.0
```
# Narrows to the first images, converts to float
x = x[:48]

# Saves these samples as a single image
torchvision.utils.save_image(x, 'cifar-4x12.png',
                             nrow = 12, pad_value = 1.0)
# Switches the row and column indexes
x.transpose_(2, 3)
torchvision.utils.save_image(x, 'cifar-4x12-rotated.png',
nrow = 12, pad_value = 1.0)
# Kills the green and blue channels

```
x[:, 1:3].fill_(0)
torchvision.utils.save_image(x, 'cifar-4x12-rotated-and-red.png',
 nrow = 12, pad_value = 1.0)
```
Broadcasting and dimension naming
**Broadcasting** automagically expands dimensions by replicating coefficients, when it is necessary to perform operations that are “intuitively reasonable”.

```python
>>> x = torch.empty(100, 4).normal_(2)
>>> x.mean(0)
tensor([2.0476, 2.0133, 1.9109, 1.8588])
>>> x -= x.mean(0) # This should not work!
>>> x.mean(0)
tensor([-4.0531e-08, -4.4703e-07, -1.3471e-07, 3.5763e-09])
```
**Broadcasting** automagically expands dimensions by replicating coefficients, when it is necessary to perform operations that are “intuitively reasonable”.

For instance:

```python
>>> x = torch.empty(100, 4).normal_(2)
>>> x.mean(0)
tensor([2.0476, 2.0133, 1.9109, 1.8588])
>>> x -= x.mean(0) # This should not work!
>>> x.mean(0)
tensor([-4.0531e-08, -4.4703e-07, -1.3471e-07, 3.5763e-09])
```
Precisely, broadcasting proceeds as follows:

1. If one of the tensors has fewer dimensions than the other, it is reshaped by adding as many dimensions of size 1 as necessary in the front; then

2. for every dimension mismatch, if one of the two tensors is of size one, it is expanded along this axis by replicating coefficients.

If there is a tensor size mismatch for one of the dimension and neither of them is one, the operation fails.
A = torch.tensor([[1.], [2.], [3.], [4.]])
B = torch.tensor([[5., -5., 5., -5., 5.]])
C = A + B
A = torch.tensor([[1.], [2.], [3.], [4.]])
B = torch.tensor([[5., -5., 5., -5., 5.]])
C = A + B

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Broadcasted

<table>
<thead>
<tr>
<th>5</th>
<th>−5</th>
<th>5</th>
<th>−5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>−5</td>
<td>5</td>
<td>−5</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>−5</td>
<td>5</td>
<td>−5</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>−5</td>
<td>5</td>
<td>−5</td>
<td>5</td>
</tr>
</tbody>
</table>

François Fleuret


A = torch.tensor([[1.], [2.], [3.], [4.]])
B = torch.tensor([[5., -5., 5., -5., 5.]])
C = A + B

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>-5</td>
<td>5</td>
<td>-5</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>-5</td>
<td>5</td>
<td>-5</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>-5</td>
<td>5</td>
<td>-5</td>
<td>5</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>-4</td>
<td>6</td>
<td>-4</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>-3</td>
<td>7</td>
<td>-3</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>-2</td>
<td>8</td>
<td>-2</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>-1</td>
<td>9</td>
<td>-1</td>
<td>9</td>
</tr>
</tbody>
</table>

Broadcasted

C = A + B
To deal with complex operations, PyTorch provides a dimension naming mechanism:

```python
>>> seq = torch.empty(100, 3, 1024, names = ['n', 'c', 't']).normal_()
>>> seq.mean('t').size()
torch.Size([100, 3])
```

```python
time_first = seq.align_to('n', 't', 'c')
time_first.size()
torch.Size([100, 1024, 3])
```

```python
array = seq.flatten(['c', 't'], 'i')
array.size()
torch.Size([100, 3072])
array.names
('n', 'i')
```
To deal with complex operations, PyTorch provides a dimension naming mechanism:

```python
>>> seq = torch.empty(100, 3, 1024, names = ['n', 'c', 't']).normal_()
>>> seq.mean('t').size()
torch.Size([100, 3])
>>> time_first = seq.align_to('n', 't', 'c')
>>> time_first.size()
torch.Size([100, 1024, 3])
```
To deal with complex operations, PyTorch provides a dimension naming mechanism:

```python
>>> seq = torch.empty(100, 3, 1024, names = ['n', 'c', 't']).normal_()
>>> seq.mean('t').size()
torch.Size([100, 3])
>>> time_first = seq.align_to('n', 't', 'c')
>>> time_first.size()
torch.Size([100, 1024, 3])
>>> array = seq.flatten(['c', 't'], 'i')
>>> array.size()
torch.Size([100, 3072])
>>> array.names
('n', 'i')
```
The end