Constructing deep generative architectures requires layers to increase the signal dimension, the contrary of what we have done so far with feed-forward networks.

Some generative processes optimize the input, and as such rely on back-propagation to expend the signal from a low-dimension representation to the high-dimension signal space.

The same can be done in the forward pass with *transposed convolution layers* whose forward operation corresponds to a convolution layer’s backward pass.
Consider a 1d convolution with a kernel κ

$$y_i = (x \circ \kappa)_i$$
$$= \sum_a x_{i+a-1} \kappa_a$$
$$= \sum_u x_u \kappa_{u-i+1}.$$

We get

$$\left[\frac{\partial \ell}{\partial x} \right]_u = \frac{\partial \ell}{\partial x_u}$$
$$= \sum_i \frac{\partial \ell}{\partial y_i} \frac{\partial y_i}{\partial x_u}$$
$$= \sum_i \frac{\partial \ell}{\partial y_i} \kappa_{u-i+1}.$$

which looks a lot like a standard convolution layer, except that the kernel coefficients are visited in reverse order.

This is actually the standard convolution operator from signal processing. If $*$ denotes this operation, we have

$$(x * \kappa)_i = \sum_a x_a \kappa_{i-a+1}.$$

Coming back to the backward pass of the convolution layer, if

$$y = x \circ \kappa$$

then

$$\left[\frac{\partial \ell}{\partial x} \right] = \left[\frac{\partial \ell}{\partial y} \right] * \kappa.$$
In the deep-learning field, since it corresponds to transposing the weight matrix of the equivalent fully-connected layer, it is called a **transposed convolution**.

\[
\begin{pmatrix}
\kappa_1 & \kappa_2 & \kappa_3 & 0 & 0 & 0 \\
0 & \kappa_1 & \kappa_2 & \kappa_3 & 0 & 0 \\
0 & 0 & \kappa_1 & \kappa_2 & \kappa_3 & 0 \\
0 & 0 & 0 & \kappa_1 & \kappa_2 & \kappa_3 \\
0 & 0 & 0 & 0 & \kappa_1 & \kappa_2 & \kappa_3 \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
\kappa_1 & 0 & 0 & 0 & 0 \\
0 & \kappa_1 & \kappa_2 & \kappa_3 & 0 \\
0 & 0 & \kappa_1 & \kappa_2 & \kappa_3 \\
0 & 0 & 0 & \kappa_1 & \kappa_2 \\
0 & 0 & 0 & 0 & \kappa_1 \\
\end{pmatrix}
\]

A convolution can be seen as a series of inner products, a transposed convolution can be seen as a weighted sum of translated kernels.
F.conv_transpose1d implements the operation we just described. It takes as input a batch of multi-channel samples, and produces a batch of multi-channel samples.

```python
>>> x = torch.tensor([[0., 0., 1., 0., 0., 0., 0.]])
>>> k = torch.tensor([[1., 2., 3.]])
>>> F.conv1d(x, k)
tensor([[ 3., 2., 1., 0., 0.]])
```

Kernel:

```
1 2 -1
2 4 -2
3 6 -3
0 0 0
```

Input:

```
2 3 0 -1
```

Output:

```
2 7 4
```

```python
>>> F.conv_transpose1d(x, k)
tensor([[ 0., 0., 1., 2., 3., 0., 0., 0., 0.]])
```

+

```python
>>> F.conv_transpose1d(x, k)
tensor([[ 0., 0., 1., 2., 3., 0., 0., 0., 0.]])
```
The class `nn.ConvTranspose1d` embeds that operation into a `nn.Module`.

```python
>>> x = torch.tensor([[ 1., 0., 0., 0., -1.]])
>>> m = nn.ConvTranspose1d(1, 1, kernel_size=3)
>>> with torch.autograd.no_grad():
...     m.bias.zero_()
...     m.weight.copy_(torch.tensor([ 1, 2, 1 ]))
... Parameter containing:
... tensor([0.], requires_grad=True)
... Parameter containing:
... tensor([[1., 2., 1.]], requires_grad=True)
>>> y = m(x)
>>> y
tensor([[ 1., 2., 1., 0., -1., -2., -1.]], grad_fn=<SqueezeBackward1>)
```

Transposed convolutions also have a dilation parameter that behaves as for convolution and expends the kernel size without increasing the number of parameters by making it sparse.

They also have a stride and padding parameters, however, due to the relation between convolutions and transposed convolutions:

⚠️ While for convolutions stride and padding are defined in the input map, for transposed convolutions these parameters are defined in the output map, and the latter modulates a cropping operation.
The composition of a convolution and a transposed convolution of same parameters keep the signal size [roughly] unchanged.

⚠️ A convolution with a stride greater than one may ignore parts of the signal. Its composition with the corresponding transposed convolution generates a map of the size of the observed area.

For instance, a 1d convolution of kernel size w and stride s composed with the transposed convolution of same parameters maintains the signal size W, only if

$$\exists q \in \mathbb{N}, \ W = w + s \cdot q.$$
It has been observed that transposed convolutions may create some grid-structure artifacts, since generated pixels are not all covered similarly.

For instance with a 4×4 kernel and stride 3

An alternative is to use an analytic up-scaling, implemented in the PyTorch functional `F.interpolate`.

```python
>>> x = torch.tensor([[ [1., 2.], [3., 4.]]])
>>> F.interpolate(x, scale_factor = 3, mode = 'bilinear')
tensor([[ [1.0000, 1.0000, 1.3333, 1.6667, 2.0000, 2.0000],
         [1.0000, 1.0000, 1.3333, 1.6667, 2.0000, 2.0000],
         [1.6667, 1.6667, 2.0000, 2.3333, 2.6667, 2.6667],
         [2.3333, 2.3333, 2.6667, 3.0000, 3.3333, 3.3333],
         [3.0000, 3.0000, 3.3333, 3.6667, 4.0000, 4.0000],
         [3.0000, 3.0000, 3.3333, 3.6667, 4.0000, 4.0000]]))

>>> F.interpolate(x, scale_factor = 3, mode = 'nearest')
tensor([[ [1., 1., 1., 2., 2., 2.],
         [1., 1., 1., 2., 2., 2.],
         [1., 1., 1., 2., 2., 2.],
         [3., 3., 3., 4., 4., 4.],
         [3., 3., 3., 4., 4., 4.],
         [3., 3., 3., 4., 4., 4.]]])
```
Such module is usually combined with a convolution to learn local corrections to undesirable artifacts of the up-scaling.

In practice, a transposed convolution such as

```python
tconv = nn.ConvTranspose2d(nic, noc,
    kernel_size = 3, stride = 2,
    padding = 1, output_padding = 1),

y = tconv(x)
```

can be replaced by

```python
conv = nn.Conv2d(nic, noc, kernel_size = 3, padding = 1)

u = F.interpolate(x, scale_factor = 2, mode = 'bilinear')

y = conv(u)
```