Deep learning

4.1. DAG networks

François Fleuret
https://fleuret.org/ee559/
Nov 2, 2020
We can generalize an MLP

\[x \times w^{(1)} + b^{(1)} \sigma \times w^{(2)} + b^{(2)} \sigma f(x) \]

to an arbitrary “Directed Acyclic Graph” (DAG) of operators
Forward pass

\[
\begin{align*}
x^{(0)} &= x \\
x^{(1)} &= \phi^{(1)}(x^{(0)}; w^{(1)}) \\
x^{(2)} &= \phi^{(2)}(x^{(0)}, x^{(1)}; w^{(2)}) \\
f(x) &= x^{(3)} = \phi^{(3)}(x^{(1)}, x^{(2)}; w^{(1)})
\end{align*}
\]
If $(a_1, \ldots, a_Q) = \phi(b_1, \ldots, b_R)$, we use the notation
\[
\frac{\partial a}{\partial b} = J_\phi = \begin{pmatrix}
\frac{\partial a_1}{\partial b_1} & \cdots & \frac{\partial a_1}{\partial b_R} \\
\vdots & \ddots & \vdots \\
\frac{\partial a_Q}{\partial b_1} & \cdots & \frac{\partial a_Q}{\partial b_R}
\end{pmatrix}.
\]

It does not specify at which point this is computed, but it will always be for the forward-pass activations.

Also, if $(a_1, \ldots, a_Q) = \phi(b_1, \ldots, b_R, c_1, \ldots, c_S)$, we use
\[
\frac{\partial a}{\partial c} = J_{\phi|c} = \begin{pmatrix}
\frac{\partial a_1}{\partial c_1} & \cdots & \frac{\partial a_1}{\partial c_S} \\
\vdots & \ddots & \vdots \\
\frac{\partial a_Q}{\partial c_1} & \cdots & \frac{\partial a_Q}{\partial c_S}
\end{pmatrix}.
\]
Backward pass, derivatives w.r.t activations

\[
\begin{align*}
\frac{\partial \ell}{\partial x(0)} &= \left[\frac{\partial x(1)}{\partial x(0)}, \frac{\partial x(1)}{\partial x(1)}, \frac{\partial x(1)}{\partial x(1)} \right] \\
\frac{\partial \ell}{\partial x(0)} &= \left[\frac{\partial x(1)}{\partial x(0)}, \frac{\partial x(1)}{\partial x(1)}, \frac{\partial x(1)}{\partial x(1)} \right]
\end{align*}
\]

\[
\begin{align*}
\frac{\partial \ell}{\partial x(0)} &= \frac{\partial \ell}{\partial x(1)} \frac{\partial x(1)}{\partial x(0)} + \frac{\partial \ell}{\partial x(1)} \frac{\partial x(1)}{\partial x(1)} + \frac{\partial \ell}{\partial x(1)} \frac{\partial x(1)}{\partial x(1)} \\
\frac{\partial \ell}{\partial x(0)} &= \frac{\partial \ell}{\partial x(1)} \frac{\partial x(1)}{\partial x(0)} + \frac{\partial \ell}{\partial x(1)} \frac{\partial x(1)}{\partial x(1)} + \frac{\partial \ell}{\partial x(1)} \frac{\partial x(1)}{\partial x(1)}
\end{align*}
\]

François Fleuret
Backward pass, derivatives w.r.t parameters

\[
\begin{align*}
\frac{\partial \ell}{\partial w^{(1)}} &= \left[\frac{\partial x^{(1)}}{\partial w^{(1)}} \right] \left[\frac{\partial \ell}{\partial x^{(1)}} \right] + \left[\frac{\partial x^{(3)}}{\partial w^{(1)}} \right] \left[\frac{\partial \ell}{\partial x^{(3)}} \right] = J_{\phi^{(1)} | w^{(1)}} \left[\frac{\partial \ell}{\partial x^{(1)}} \right] + J_{\phi^{(3)} | w^{(1)}} \left[\frac{\partial \ell}{\partial x^{(3)}} \right] \\
\frac{\partial \ell}{\partial w^{(2)}} &= \left[\frac{\partial x^{(2)}}{\partial w^{(2)}} \right] \left[\frac{\partial \ell}{\partial x^{(2)}} \right] = J_{\phi^{(2)} | w^{(2)}} \left[\frac{\partial \ell}{\partial x^{(2)}} \right]
\end{align*}
\]
So if we have a library of “tensor operators”, and implementations of

\[
(x_1, \ldots, x_d, w) \mapsto \phi(x_1, \ldots, x_d; w) \\
\forall c, (x_1, \ldots, x_d, w) \mapsto J_{\phi|_{x}}(x_1, \ldots, x_d; w) \\
(x_1, \ldots, x_d, w) \mapsto J_{\phi|_{w}}(x_1, \ldots, x_d; w),
\]

we can build an arbitrary directed acyclic graph with these operators at the nodes, compute the response of the resulting mapping, and compute its gradient with back-prop.
Writing from scratch a large neural network is complex and error-prone.

Multiple frameworks provide libraries of tensor operators and mechanisms to combine them into DAGs and automatically differentiate them.

<table>
<thead>
<tr>
<th>Language(s)</th>
<th>License</th>
<th>Main backer</th>
</tr>
</thead>
<tbody>
<tr>
<td>PyTorch</td>
<td>Python</td>
<td>BSD</td>
</tr>
<tr>
<td>Caffe2</td>
<td>C++, Python</td>
<td>Apache</td>
</tr>
<tr>
<td>TensorFlow</td>
<td>Python, C++</td>
<td>Apache</td>
</tr>
<tr>
<td>JAX</td>
<td>Python</td>
<td>Apache</td>
</tr>
<tr>
<td>MXNet</td>
<td>Python, C++, R, Scala</td>
<td>Apache</td>
</tr>
<tr>
<td>CNTK</td>
<td>Python, C++</td>
<td>MIT</td>
</tr>
<tr>
<td>Torch</td>
<td>Lua</td>
<td>BSD</td>
</tr>
<tr>
<td>Theano</td>
<td>Python</td>
<td>BSD</td>
</tr>
<tr>
<td>Caffe</td>
<td>C++</td>
<td>BSD 2 clauses</td>
</tr>
</tbody>
</table>

One approach is to define the nodes and edges of such a DAG statically (Torch, TensorFlow, Caffe, Theano, etc.)
In TensorFlow, to run a forward/backward pass on

\[
\phi^{(1)}(x^{(0)}; w^{(1)}) = w^{(1)}x^{(0)} \\
\phi^{(2)}(x^{(0)}, x^{(1)}; w^{(2)}) = x^{(0)} + w^{(2)}x^{(1)} \\
\phi^{(3)}(x^{(1)}, x^{(2)}; w^{(1)}) = w^{(1)}(x^{(1)} + x^{(2)})
\]

\[
w_1 = tf.Variable(tf.random_normal([5, 5])) \\
w_2 = tf.Variable(tf.random_normal([5, 5])) \\
x = tf.Variable(tf.random_normal([5, 1])) \\
x_0 = x \\
x_1 = tf.matmul(w_1, x_0) \\
x_2 = x_0 + tf.matmul(w_2, x_1) \\
x_3 = tf.matmul(w_1, x_1 + x_2) \\
q = tf.norm(x_3)
\]

\[
gw_1, gw_2 = tf.gradients(q, [w_1, w_2])
\]

with tf.Session() as sess:
 sess.run(tf.global_variables_initializer())
 gw1, gw2 = sess.run([gw1, gw2])
Weight sharing
In our generalized DAG formulation, we have in particular implicitly allowed the same parameters to modulate different parts of the processing.

For instance $w^{(1)}$ in our example parametrizes both $\phi^{(1)}$ and $\phi^{(3)}$.

This is called weight sharing.
Weight sharing allows in particular to build **siamese networks** where a full sub-network is replicated several times.