We want to train an MLP by minimizing a loss over the training set
\[\mathcal{L}(w, b) = \sum_n \ell(f(x_n; w, b), y_n). \]

To use gradient descent, we need the expression of the gradient of the per-sample loss \(\ell_n = \ell(f(x_n; w, b), y_n) \) with respect to the parameters, e.g.
\[
\frac{\partial \ell_n}{\partial w^{(l)}_{i,j}} \quad \text{and} \quad \frac{\partial \ell_n}{\partial b^{(l)}_i}.
\]
For clarity, we consider a single training sample x, and introduce $s^{(1)}, \ldots, s^{(L)}$ as the summations before activation functions.

\[
x^{(0)} = x \xrightarrow{w^{(1)}, b^{(1)}} s^{(1)} \xrightarrow{\sigma} x^{(1)} \xrightarrow{w^{(2)}, b^{(2)}} s^{(2)} \xrightarrow{\sigma} \ldots \xrightarrow{w^{(L)}, b^{(L)}} s^{(L)} \xrightarrow{\sigma} x^{(L)} = f(x; w, b).
\]

Formally we set $x^{(0)} = x$,\[\forall l = 1, \ldots, L, \left\{ \begin{array}{l} s^{(l)} = w^{(l)} x^{(l-1)} + b^{(l)} \\ x^{(l)} = \sigma (s^{(l)}) \end{array} \right.\]
and we set the output of the network as $f(x; w, b) = x^{(L)}$.

This is the **forward pass**.

The core principle of the back-propagation algorithm is the “chain rule” from differential calculus:

\[(g \circ f)' = (g' \circ f)f'. \]

The linear approximation of a composition of mappings is the product of their individual linear approximations.

This generalizes to longer compositions and higher dimensions

\[J_{f_N \circ f_{N-1} \circ \ldots \circ f_1} (x) = J_{f_N} (f_{N-1}(\ldots (x))) \ldots J_{f_3} (f_2 (f_1 (x))) J_{f_2} (f_1 (x)) J_{f_1} (x) \]

where $J_{f} (x)$ is the Jacobian of f at x, that is the matrix of the linear approximation of f in the neighborhood of x.
\[x^{(l-1)} \xrightarrow{w^{(l)}, b^{(l)}} s^{(l)} \xrightarrow{\sigma} x^{(l)} \]

Since \(s_i^{(l)} \) influences \(\ell' \) only through \(x_i^{(l)} \) with \(x_i^{(l)} = \sigma(s_i^{(l)}) \), we have
\[
\frac{\partial \ell}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \frac{\partial x_i^{(l)}}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \sigma'(s_i^{(l)}),
\]

And since \(x_j^{(l-1)} \) influences \(\ell' \) only through the \(s_i^{(l)} \) with \(s_i^{(l)} = \sum_j w_{i,j} x_j^{(l-1)} + b_i^{(l)} \), we have
\[
\frac{\partial \ell}{\partial x_j^{(l-1)}} = \sum_i \frac{\partial \ell}{\partial s_i^{(l)}} \frac{\partial s_i^{(l)}}{\partial x_j^{(l-1)}} = \sum_i \frac{\partial \ell}{\partial s_i^{(l)}} w_{i,j}^{(l)}.
\]

Since \(w_{i,j}^{(l)} \) and \(b_i^{(l)} \) influences \(\ell' \) only through \(s_i^{(l)} \) with \(s_i^{(l)} = \sum_j w_{i,j} x_j^{(l-1)} + b_i^{(l)} \), we have
\[
\frac{\partial \ell}{\partial w_{i,j}^{(l)}} = \frac{\partial \ell}{\partial s_i^{(l)}} \frac{\partial s_i^{(l)}}{\partial w_{i,j}^{(l)}} = \frac{\partial \ell}{\partial s_i^{(l)}} x_j^{(l-1)},
\]
\[
\frac{\partial \ell}{\partial b_i^{(l)}} = \frac{\partial \ell}{\partial s_i^{(l)}}.
\]
To summarize: we can compute $\frac{\partial \ell}{\partial x_i^{(l)}}$ from the definition of ℓ, and recursively propagate backward the derivatives of the loss w.r.t the activations with

$$\frac{\partial \ell}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \sigma'(s_i^{(l)})$$

and

$$\frac{\partial \ell}{\partial x_j^{(l-1)}} = \sum_i \frac{\partial \ell}{\partial s_i^{(l)}} w_{i,j}^{(l)}.$$

And then compute the derivatives w.r.t the parameters with

$$\frac{\partial \ell}{\partial w_{i,j}^{(l)}} = \frac{\partial \ell}{\partial s_i^{(l)}} x_j^{(l-1)},$$

and

$$\frac{\partial \ell}{\partial b_i^{(l)}} = \frac{\partial \ell}{\partial s_i^{(l)}}.$$

To write in tensorial form we will use a notation for the Jacobian to make explicit the variable wrt which the derivatives are computed. For $\psi : \mathbb{R}^N \to \mathbb{R}^M$,

$$\begin{bmatrix} \frac{\partial \psi}{\partial x_1} \\ \vdots \\ \frac{\partial \psi}{\partial x_N} \end{bmatrix} = \begin{bmatrix} \frac{\partial \psi_1}{\partial x_1} & \cdots & \frac{\partial \psi_1}{\partial x_N} \\ \vdots & \ddots & \vdots \\ \frac{\partial \psi_M}{\partial x_1} & \cdots & \frac{\partial \psi_M}{\partial x_N} \end{bmatrix},$$

and if $\psi : \mathbb{R}^{N \times M} \to \mathbb{R}$, we will use the compact notation, also tensorial

$$\begin{bmatrix} \frac{\partial \psi}{\partial w_{1,1}} \\ \vdots \\ \frac{\partial \psi}{\partial w_{1,M}} \\ \vdots \\ \frac{\partial \psi}{\partial w_{N,1}} \\ \vdots \\ \frac{\partial \psi}{\partial w_{N,M}} \end{bmatrix} = \begin{bmatrix} \frac{\partial \psi}{\partial w_{1,1}} & \cdots & \frac{\partial \psi}{\partial w_{1,M}} \\ \vdots & \ddots & \vdots \\ \frac{\partial \psi}{\partial w_{N,1}} & \cdots & \frac{\partial \psi}{\partial w_{N,M}} \end{bmatrix}.$$
Forward pass
Compute the activations.
\[x^{(0)} = x, \quad \forall l = 1, \ldots, L, \quad \left\{ \begin{array}{l} s^{(l)} = w^{(l)} x^{(l-1)} + b^{(l)} \\ x^{(l)} = \sigma (s^{(l)}) \end{array} \right. \]

Backward pass
Compute the derivatives of the loss wrt the activations.

\[
\begin{align*}
\begin{cases}
\frac{\partial \ell}{\partial x^{(l)}} & \text{from the definition of } \ell \\
\frac{\partial \ell}{\partial s^{(l)}} & \text{if } l < L, \left(w^{(l+1)} \right)^T \left[\frac{\partial \ell}{\partial s^{(l+1)}} \right] \\
\end{cases}
\end{align*}
\]

Compute the derivatives of the loss wrt the parameters.

\[
\left[\frac{\partial \ell}{\partial w^{(l)}} \right] = \left(x^{(l-1)} \right)^T \left[\frac{\partial \ell}{\partial x^{(l)}} \right], \quad \left[\frac{\partial \ell}{\partial b^{(l)}} \right] = \left[\frac{\partial \ell}{\partial s^{(l)}} \right].
\]

Gradient step
Update the parameters.

\[
w^{(l)} \leftarrow w^{(l)} - \eta \left[\frac{\partial \ell}{\partial w^{(l)}} \right], \quad b^{(l)} \leftarrow b^{(l)} - \eta \left[\frac{\partial \ell}{\partial b^{(l)}} \right]
\]
In spite of its hairy formalization, the backward pass is a simple algorithm: apply the chain rule again and again.

As for the forward pass, it can be expressed in tensorial form. Heavy computation is concentrated in linear operations, and all the non-linearities go into component-wise operations.

Regarding computation, since the costly operation for the forward pass is

\[s^{(l)} = w^{(l)} x^{(l-1)} + b^{(l)} \]

and for the backward

\[
\left[\frac{\partial \ell}{\partial x^{(l)}} \right] = \left(w^{(l+1)} \right)^T \left[\frac{\partial \ell}{\partial s^{(l+1)}} \right]
\]

and

\[
\left[\frac{\partial \ell}{\partial w^{(l)}} \right] = \left[\frac{\partial \ell}{\partial s^{(l)}} \right] \left(x^{(l-1)} \right)^T,
\]

the rule of thumb is that the backward pass is twice more expensive than the forward one.