Deep learning

3.6. Back-propagation

François Fleuret
https://fleuret.org/ee559/
Nov 2, 2020
We want to train an MLP by minimizing a loss over the training set

\[\mathcal{L}(w, b) = \sum_n \ell(f(x_n; w, b), y_n). \]

To use gradient descent, we need the expression of the gradient of the per-sample loss \(\ell_n = \ell(f(x_n; w, b), y_n) \) with respect to the parameters, e.g.

\[\frac{\partial \ell_n}{\partial w^{(l)}_{i,j}} \quad \text{and} \quad \frac{\partial \ell_n}{\partial b^{(l)}_i}. \]
For clarity, we consider a single training sample x, and introduce $s^{(1)}, \ldots, s^{(L)}$ as the summations before activation functions.

$$x^{(0)} = x \xrightarrow{w^{(1)}, b^{(1)}} s^{(1)} \xrightarrow{\sigma} x^{(1)} \xrightarrow{w^{(2)}, b^{(2)}} s^{(2)} \xrightarrow{\sigma} \ldots \xrightarrow{w^{(L)}, b^{(L)}} s^{(L)} \xrightarrow{\sigma} x^{(L)} = f(x; w, b).$$

Formally we set $x^{(0)} = x$,

$$\forall l = 1, \ldots, L, \begin{cases} s^{(l)} = w^{(l)}x^{(l-1)} + b^{(l)} \\ x^{(l)} = \sigma(s^{(l)}) \end{cases},$$

and we set the output of the network as $f(x; w, b) = x^{(L)}$.

This is the forward pass.
The core principle of the back-propagation algorithm is the “chain rule” from differential calculus:

\[(g \circ f)' = (g' \circ f)f'.\]

The linear approximation of a composition of mappings is the product of their individual linear approximations.

This generalizes to longer compositions and higher dimensions

\[J_{f_N \circ f_{N-1} \circ \cdots \circ f_1}(x) = J_{f_N}(f_{N-1}((\cdots (x)))) \cdots J_{f_3}(f_2(f_1(x))) J_{f_2}(f_1(x)) J_{f_1}(x)\]

where \(J_f(x)\) is the Jacobian of \(f\) at \(x\), that is the matrix of the linear approximation of \(f\) in the neighborhood of \(x\).
\[x^{(l-1)} \xrightarrow{w^{(l)}, b^{(l)}} s^{(l)} \xrightarrow{\sigma} x^{(l)} \]

Since \(s_i^{(l)} \) influences \(l \) only through \(x_i^{(l)} \) with
\[
x_i^{(l)} = \sigma(s_i^{(l)}) \]
we have
\[
\frac{\partial \ell}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \frac{\partial x_i^{(l)}}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \sigma'(s_i^{(l)}) ,
\]

And since \(x_j^{(l-1)} \) influences \(l \) only through the \(s_i^{(l)} \) with
\[
s_i^{(l)} = \sum_j w_{i,j} x_j^{(l-1)} + b_i^{(l)} ,
\]
we have
\[
\frac{\partial \ell}{\partial x_j^{(l-1)}} = \sum_i \frac{\partial \ell}{\partial s_i^{(l)}} \frac{\partial s_i^{(l)}}{\partial x_j^{(l-1)}} = \sum_i \frac{\partial \ell}{\partial s_i^{(l)}} w_{i,j} .
\]
\[
\begin{align*}
\chi^{(l-1)} & \xrightarrow{w^{(l)}, b^{(l)}} s^{(l)} \xrightarrow{\sigma} \chi^{(l)} \\
\text{Since } w^{(l)}_{i,j} \text{ and } b^{(l)}_i \text{ influences } \epsilon' \text{ only through } s^{(l)}_i \text{ with} \\
s^{(l)}_i = \sum_j w^{(l)}_{i,j} x^{(l-1)}_j + b^{(l)}_i,
\end{align*}
\]

we have

\[
\begin{align*}
\frac{\partial \ell}{\partial w^{(l)}_{i,j}} &= \frac{\partial \ell}{\partial s^{(l)}_i} \frac{\partial s^{(l)}_i}{\partial w^{(l)}_{i,j}} = \frac{\partial \ell}{\partial s^{(l)}_i} x^{(l-1)}_j, \\
\frac{\partial \ell}{\partial b^{(l)}_i} &= \frac{\partial \ell}{\partial s^{(l)}_i}.
\end{align*}
\]
To summarize: we can compute $\frac{\partial \ell}{\partial x_i^{(l)}}$ from the definition of ℓ, and recursively propagate backward the derivatives of the loss w.r.t the activations with

$$\frac{\partial \ell}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \sigma'(s_i^{(l)})$$

and

$$\frac{\partial \ell}{\partial x_j^{(l-1)}} = \sum_i \frac{\partial \ell}{\partial s_i^{(l)}} w_{i,j}^{(l)}.$$

And then compute the derivatives w.r.t the parameters with

$$\frac{\partial \ell}{\partial w_{i,j}^{(l)}} = \frac{\partial \ell}{\partial s_i^{(l)}} x_j^{(l-1)},$$

and

$$\frac{\partial \ell}{\partial b_i^{(l)}} = \frac{\partial \ell}{\partial s_i^{(l)}}.$$
To write in tensorial form we will use a notation for the Jacobian to make explicit the variable wrt which the derivatives are computed. For $\psi : \mathbb{R}^N \rightarrow \mathbb{R}^M$,

$$
\begin{bmatrix}
\frac{\partial \psi}{\partial x}
\end{bmatrix}
=
\begin{pmatrix}
\frac{\partial \psi_1}{\partial x_1} & \cdots & \frac{\partial \psi_1}{\partial x_N} \\
\vdots & \ddots & \vdots \\
\frac{\partial \psi_M}{\partial x_1} & \cdots & \frac{\partial \psi_M}{\partial x_N}
\end{pmatrix},
$$

and if $\psi : \mathbb{R}^{N \times M} \rightarrow \mathbb{R}$, we will use the notation

$$
\begin{bmatrix}
\frac{\partial \psi}{\partial w}
\end{bmatrix}
=
\begin{pmatrix}
\frac{\partial \psi}{\partial w_{1,1}} & \cdots & \frac{\partial \psi}{\partial w_{1,M}} \\
\vdots & \ddots & \vdots \\
\frac{\partial \psi}{\partial w_{N,1}} & \cdots & \frac{\partial \psi}{\partial w_{N,M}}
\end{pmatrix}.
$$
\(\mathbf{w}(l) \)

\(\mathbf{x}(l-1) \)

\(\times \cdot \mathbf{T} \)

\(\mathbf{s}(l) \)

\(\sigma \)

\(\mathbf{x}(l) \)

\(\mathbf{y}(l) \)

\(\mathbf{y}(l) \)

\(\mathbf{y}(l) \)

\(\frac{\partial r}{\partial \mathbf{x}(l-1)} \)

\(\times \cdot \mathbf{T} \)

\(\frac{\partial r}{\partial \mathbf{s}(l)} \)

\(\circ \)

\(\frac{\partial r}{\partial s(l)} \)

\(\frac{\partial r}{\partial w(l)} \)

\(\frac{\partial r}{\partial b(l)} \)
Forward pass

Compute the activations.

\[x^{(0)} = x, \quad \forall l = 1, \ldots, L, \left\{ \begin{array}{l} s^{(l)} = w^{(l)} x^{(l-1)} + b^{(l)} \\ x^{(l)} = \sigma(s^{(l)}) \end{array} \right. \]

Backward pass

Compute the derivatives of the loss wrt the activations.

\[
\begin{cases}
\frac{\partial \ell}{\partial x^{(l)}} 	ext{ from the definition of } \ell \\
\text{if } l < L,
\left[\frac{\partial \ell}{\partial x^{(l)}} \right] = \left(w^{(l+1)} \right)^T \left[\frac{\partial \ell}{\partial s^{(l+1)}} \right]
\end{cases}
\]

Compute the derivatives of the loss wrt the parameters.

\[
\left[\frac{\partial \ell}{\partial w^{(l)}} \right] = \left[\frac{\partial \ell}{\partial s^{(l)}} \right] \left(x^{(l-1)} \right)^T \quad \left[\frac{\partial \ell}{\partial b^{(l)}} \right] = \left[\frac{\partial \ell}{\partial s^{(l)}} \right].
\]

Gradient step

Update the parameters.

\[
w^{(l)} \leftarrow w^{(l)} - \eta \left[\frac{\partial \ell}{\partial w^{(l)}} \right] \\
b^{(l)} \leftarrow b^{(l)} - \eta \left[\frac{\partial \ell}{\partial b^{(l)}} \right]
\]
In spite of its hairy formalization, the backward pass is a simple algorithm: apply the chain rule again and again.

As for the forward pass, it can be expressed in tensorial form. Heavy computation is concentrated in linear operations, and all the non-linearities go into component-wise operations.
Regarding computation, since the costly operation for the forward pass is

\[s^{(l)} = w^{(l)} x^{(l-1)} + b^{(l)} \]

and for the backward

\[
\frac{\partial \ell}{\partial x^{(l)}} = (w^{(l+1)})^\top \frac{\partial \ell}{\partial s^{(l+1)}}
\]

and

\[
\left[\frac{\partial \ell}{\partial \omega^{(l)}} \right] = \left[\frac{\partial \ell}{\partial s^{(l)}} \right] (x^{(l-1)})^\top,
\]

the rule of thumb is that the backward pass is twice more expensive than the forward one.