We want to train an MLP by minimizing a loss over the training set

$$\mathcal{L}(w, b) = \sum_n \ell(f(x_n; w, b), y_n).$$

To use gradient descent, we need the expression of the gradient of the per-sample loss $\ell_n = \ell(f(x_n; w, b), y_n)$ with respect to the parameters, e.g.

$$\frac{\partial \ell_n}{\partial w^{(l)}_{i,j}} \quad \text{and} \quad \frac{\partial \ell_n}{\partial b^{(l)}_i}.$$
For clarity, we consider a single training sample x, and introduce $s^{(1)}, \ldots, s^{(L)}$ as the summations before activation functions.

$$x^{(0)} = x \xrightarrow{w^{(1)}, b^{(1)}} s^{(1)} \rightarrow x^{(1)} \xrightarrow{w^{(2)}, b^{(2)}} s^{(2)} \rightarrow \ldots \rightarrow \xrightarrow{w^{(L)}, b^{(L)}} s^{(L)} \rightarrow x^{(L)} = f(x; w, b).$$

Formally we set $x^{(0)} = x$,

$$\forall l = 1, \ldots, L, \quad \begin{cases}
 s^{(l)} = w^{(l)} x^{(l-1)} + b^{(l)} \\
 x^{(l)} = \sigma (s^{(l)})
\end{cases},$$

and we set the output of the network as $f(x; w, b) = x^{(L)}$.

This is the forward pass.

The core principle of the back-propagation algorithm is the “chain rule” from differential calculus:

$$(g \circ f)' = (g' \circ f)f'.$$

The linear approximation of a composition of mappings is the product of their individual linear approximations.

This generalizes to longer compositions and higher dimensions

$$J_{f_N \circ f_{N-1} \circ \ldots \circ f_1} (x) = J_{f_N} (f_{N-1} (\ldots (x)))) \cdots J_{f_5} (f_4 (f_3 (x))) J_{f_2} (f_1 (x)) J_{f_1} (x)$$

where $J_f (x)$ is the Jacobian of f at x, that is the matrix of the linear approximation of f in the neighborhood of x.
\[
\begin{align*}
 x^{(l-1)} &\quad \xrightarrow{w^{(l)}, b^{(l)}} \quad s^{(l)} \quad \sigma \quad \xrightarrow{} \quad x^{(l)} \\

 \text{Since } s_i^{(l)} \text{ influences } \ell' \text{ only through } x_i^{(l)} \text{ with} \\
 x_i^{(l)} &= \sigma(s_i^{(l)}), \\
 \text{we have} \\
 \frac{\partial \ell}{\partial s_i^{(l)}} &= \frac{\partial \ell}{\partial x_i^{(l)}} \frac{\partial x_i^{(l)}}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \sigma'(s_i^{(l)}),
\end{align*}
\]

And since \(x_j^{(l-1)} \) influences \(\ell' \) only through the \(s_i^{(l)} \) with
\[
 s_i^{(l)} = \sum_j w_{i,j} x_j^{(l-1)} + b_i^{(l)},
\]
we have
\[
 \frac{\partial \ell}{\partial x_j^{(l-1)}} = \sum_j \frac{\partial \ell}{\partial s_i^{(l)}} \frac{\partial s_i^{(l)}}{\partial x_j^{(l-1)}} = \sum_i \frac{\partial \ell}{\partial s_i^{(l)}} w_{i,j}^{(l)}.
\]
To summarize: we can compute $\frac{\partial \ell}{\partial x_i}$ from the definition of ℓ, and recursively propagate backward the derivatives of the loss w.r.t. the activations with

$$\frac{\partial \ell}{\partial s_i} = \frac{\partial \ell}{\partial x_i} \sigma'(s_i)$$

and

$$\frac{\partial \ell}{\partial x_j} = \sum_i \frac{\partial \ell}{\partial s_i} w_{i,j}.$$

And then compute the derivatives w.r.t. the parameters with

$$\frac{\partial \ell}{\partial w_i} = \frac{\partial \ell}{\partial s_i} x_j^{(l-1)},$$

and

$$\frac{\partial \ell}{\partial b_i} = \frac{\partial \ell}{\partial s_i}.$$

To write in tensorial form we will use a notation for the Jacobian to make explicit the variable w.r.t which the derivatives are computed. For $\psi: \mathbb{R}^N \to \mathbb{R}^M$,

$$\left[\frac{\partial \psi}{\partial x} \right] = \begin{pmatrix} \frac{\partial \psi_1}{\partial x_1} & \cdots & \frac{\partial \psi_1}{\partial x_N} \\ \vdots & \ddots & \vdots \\ \frac{\partial \psi_M}{\partial x_1} & \cdots & \frac{\partial \psi_M}{\partial x_N} \end{pmatrix},$$

and if $\psi: \mathbb{R}^{N \times M} \to \mathbb{R}$, we will use the notation

$$\left[\frac{\partial \psi}{\partial w} \right] = \begin{pmatrix} \frac{\partial \psi}{\partial w_{1,1}} & \cdots & \frac{\partial \psi}{\partial w_{1,M}} \\ \vdots & \ddots & \vdots \\ \frac{\partial \psi}{\partial w_{N,1}} & \cdots & \frac{\partial \psi}{\partial w_{N,M}} \end{pmatrix}.$$
Forward pass

Compute the activations.

\[x^{(0)} = x, \quad \forall l = 1, \ldots, L, \quad s^{(l)} = w^{(l)} x^{(l-1)} + b^{(l)} \]
\[x^{(l)} = \sigma(s^{(l)}) \]

Backward pass

Compute the derivatives of the loss wrt the activations.

\[
\begin{cases}
 \left[\frac{\partial \ell}{\partial x^{(l)}} \right] & \text{from the definition of } \ell \\
 \text{if } l < L, \quad \left[\frac{\partial \ell}{\partial x^{(l)}} \right] = (w^{(l+1)})^\top \left[\frac{\partial \ell}{\partial s^{(l+1)}} \right] \\
\end{cases}
\]

Compute the derivatives of the loss wrt the parameters.

\[
\left[\frac{\partial \ell}{\partial w^{(l)}} \right] = \left[\frac{\partial \ell}{\partial s^{(l)}} \right] \left(x^{(l-1)} \right)^\top \\
\left[\frac{\partial \ell}{\partial b^{(l)}} \right] = \left[\frac{\partial \ell}{\partial s^{(l)}} \right].
\]

Gradient step

Update the parameters.

\[w^{(l)} \leftarrow w^{(l)} - \eta \left[\frac{\partial \ell}{\partial w^{(l)}} \right] \\
\]
\[b^{(l)} \leftarrow b^{(l)} - \eta \left[\frac{\partial \ell}{\partial b^{(l)}} \right] \]
In spite of its hairy formalization, the backward pass is a simple algorithm: apply the chain rule again and again.

As for the forward pass, it can be expressed in tensorial form. Heavy computation is concentrated in linear operations, and all the non-linearities go into component-wise operations.

Regarding computation, since the costly operation for the forward pass is

$$s^{(l)} = w^{(l)} x^{(l-1)} + b^{(l)}$$

and for the backward

$$\left[\frac{\partial \ell}{\partial x^{(l)}} \right] = \left(w^{(l+1)} \right)^\top \left[\frac{\partial \ell}{\partial s^{(l+1)}} \right]$$

and

$$\left[\frac{\partial \ell}{\partial w^{(l)}} \right] = \left[\frac{\partial \ell}{\partial s^{(l)}} \right] \left(x^{(l-1)} \right)^\top,$$

the rule of thumb is that the backward pass is twice more expensive than the forward one.