Auto-regression methods model components of a signal serially, each one conditionally to the ones already modeled.

They rely on the chain rule from probability theory: given X_1, \ldots, X_T random variables, we have

$$
\forall x_1, \ldots, x_T, \quad P(X_1 = x_1, \ldots, X_T = x_T) = \\
P(X_1 = x_1) P(X_2 = x_2 \mid X_1 = x_1) \cdots P(X_T = x_T \mid X_1 = x_1, \ldots, X_{T-1} = x_{T-1}).
$$

Deep neural networks are a fitting class of models for such conditional densities when dealing with large dimension signal (Larochelle and Murray, 2011).
Given a sequence of random variables X_1, \ldots, X_T on \mathbb{R}, we can represent a conditioning event of the form

$$X_{t(1)} = x_1, \ldots, X_{t(N)} = x_N$$

with two tensors of dimension T: the first a Boolean mask stating which variables are conditioned, and the second the actual conditioning values.

E.g., with $T = 5$

<table>
<thead>
<tr>
<th>Event</th>
<th>Mask tensor</th>
<th>Value tensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>${X_2 = 3}$</td>
<td>[0, 1, 0, 0, 0]</td>
<td>[0, 3, 0, 0, 0]</td>
</tr>
<tr>
<td>${X_1 = 1, X_2 = 2, X_3 = 3, X_4 = 4, X_5 = 5}$</td>
<td>[1, 1, 1, 1, 1]</td>
<td>[1, 2, 3, 4, 5]</td>
</tr>
<tr>
<td>${X_5 = 50, X_2 = 20}$</td>
<td>[0, 1, 0, 0, 1]</td>
<td>[0, 20, 0, 0, 50]</td>
</tr>
</tbody>
</table>

In what follows, we will consider only finite distributions over C real values, hence we can model a conditional distribution with a mapping

$$f : \{0, 1\}^Q \times \mathbb{R}^Q \rightarrow \mathbb{R}^C,$$

where the C output values can be either probabilities, or as we will prefer, logits.

This can be generalized beyond categorical distributions by mapping to parameters of any distribution on \mathbb{R}.
Given such a model and a sampling procedure sample, the generative process for a full sequence is

\[
x_1 \leftarrow \text{sample}(f(\{\}))
\]
\[
x_2 \leftarrow \text{sample}(f(\{X_1 = x_1\}))
\]
\[
x_3 \leftarrow \text{sample}(f(\{X_1 = x_1, X_2 = x_2\}))
\]
\[
\ldots
\]
\[
x_T \leftarrow \text{sample}(f(\{X_1 = x_1, X_2 = x_2, \ldots, X_{T-1} = x_{T-1}\}))
\]

With \(C = 3\) and \(T = 5\):

\[
\begin{array}{c}
{} \\
\{X_1 = 2\} \\
\{X_1 = 2, X_2 = 1\} \\
\{X_1 = 2, X_2 = 1, X_3 = 2\}
\end{array}
\]

\[
\begin{array}{c}
{} \\
[0, 0, 0, 0, 0] \\
[1, 0, 0, 0, 0] \\
[1, 1, 0, 0, 0]
\end{array}
\]

\[
\begin{array}{c}
{} \\
[0, 0, 0, 0, 0] \\
[2, 0, 0, 0, 0] \\
[2, 1, 0, 0, 0]
\end{array}
\]

\[
\begin{array}{c}
{} \\
[0.1, 0.5, 0.4] \\
[0.6, 0.2, 0.2] \\
[0.1, 0.0, 0.9]
\end{array}
\]

\[
\begin{array}{c}
{} \\
[0.1, 0.0, 0.9] \\
[0.5, 0.2, 0.3] \\
\ldots
\end{array}
\]
The package `torch.distributions` provides the necessary tools to sample from a variety of distributions.

```python
>>> l = torch.tensor([log(0.8), log(0.1), log(0.1)])
>>> dist = torch.distributions.categorical.Categorical(logits = l)
>>> s = dist.sample((10000,))
>>> (s.view(-1, 1) == torch.arange(3).view(1, -1)).float().mean(0)
tensor([0.8037, 0.0988, 0.0975])
```

Sampling can also be done in batch

```python
>>> l = torch.tensor([[log(0.90), log(0.10)],
                    [log(0.50), log(0.50)],
                    [log(0.25), log(0.75)],
                    [log(0.01), log(0.99)]]
>>> dist = torch.distributions.categorical.Categorical(logits = l)
>>> dist.sample((8,))
tensor([[0, 1, 1, 1],
        [0, 1, 1, 1],
        [0, 0, 1, 1],
        [0, 1, 0, 1],
        [1, 0, 1, 1],
        [0, 1, 1, 1],
        [0, 1, 1, 1],
        [0, 0, 1, 1]])
```

With a finite distribution and the output values interpreted as logits, training consists of maximizing the likelihood of the training samples, hence minimizing

$$
\mathcal{L}(f) = - \sum_n \sum_t \log \hat{p}(X_t = x_{n,t} \mid X_1 = x_{n,1}, \ldots, X_{t-1} = x_{n,t-1})
$$

$$
= \sum_n \sum_t \ell(f((1, \ldots, 1, 0, \ldots, 0), (x_{n,1}, \ldots, x_{n,t-1}, 0, \ldots, 0)), x_{n,t})
$$

where ℓ is the cross-entropy.
In practice, for each batch, we sample an index to predict in each at random, from which we build the masks, conditioning values, and target values.

Consider a toy problem, where sequences from \(\{1, \ldots, C\}^T \) are split in two at a random position, and are linear in both parts, with slopes \(\sim \mathcal{U}([-1, 1]) \).

Values are re-centered and discretized into \(2T \) values.
Some train sequences

Model

```python
class Net(nn.Module):
    def __init__(self, nb_values):
        super(Net, self).__init__()

        self.features = nn.Sequential(
            nn.Conv1d(2, 32, kernel_size = 5),
            nn.ReLU(),
            nn.MaxPool1d(2),
            nn.Conv1d(32, 64, kernel_size = 5),
            nn.ReLU(),
            nn.MaxPool1d(2),
            nn.ReLU(),
        )

        self.fc = nn.Sequential(
            nn.Linear(320, 200),
            nn.ReLU(),
            nn.Linear(200, nb_values)
        )

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)
        return x
```
Training loop

```python
for sequences in train_sequences.split(batch_size):
    nb = sequences.size(0)

    # Select a random index in each sequence, this is our targets
    idx = torch.randint(len, (nb, 1), device = sequences.device)
    targets = sequences.gather(1, idx).view(-1)

    # Create masks and values accordingly
    tics = torch.arange(len, device = sequences.device).view(1, -1).expand(nb, -1)
    masks = (tics < idx.expand(-1, len)).float()
    values = (sequences.float() - mean) / std * masks

    # Make the input, set the mask and values as two channels
    input = torch.cat((masks.unsqueeze(1), values.unsqueeze(1)), 1)

    # Compute the loss and make the gradient step
    output = model(input)
    loss = cross_entropy(output, targets)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
```

Synthesis

```python
nb = 25
generated = torch.zeros(nb, len, device = device, dtype = torch.int64)
tics = torch.arange(len, device = device).view(1, -1).expand(nb, -1)

for t in range(len):
    masks = (tics < t).float()
    values = (generated.float() - mean) / std * masks
    input = torch.cat((masks.unsqueeze(1), values.unsqueeze(1)), 1)
    output = model(input)
    dist = torch.distributions.categorical.Categorical(logits = output)
    generated[:, t] = dist.sample()
```
Some generated sequences

Image auto-regression
The exact same auto-regressive approach generalizes to any tensor shape, as long as a visiting order of the coefficients is provided.

For instance, for images, we can visit pixels in the “raster scan order” corresponding to the standard mapping in memory, top-to-bottom, left-to-right.

```python
image_masks = torch.empty(16, 1, 6, 6)
for k in range(image_masks.size(0)):
    sequence_mask = torch.arange(1 * 6 * 6) < k
    image_masks[k] = sequence_mask.float().view(1, 6, 6)
```

Some of the MNIST train images
We define two functions to serialize the image tensors into sequences

```python
def seq2tensor(s):
    return s.reshape(-1, 1, 28, 28)

def tensor2seq(s):
    return s.reshape(-1, 28 * 28)
```

Model

```python
class LeNetMNIST(nn.Module):
    def __init__(self, nb_classes):
        super(LeNetMNIST, self).__init__()

        self.features = nn.Sequential(
            nn.Conv2d(2, 32, kernel_size = 3),
            nn.MaxPool2d(kernel_size = 2),
            nn.ReLU(),
            nn.Conv2d(32, 64, kernel_size = 5),
            nn.ReLU(),
        )

        self.fc = nn.Sequential(
            nn.Linear(64 * 81, 512),
            nn.ReLU(),
            nn.Linear(512, nb_classes)
        )

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)
        return x
```
Training loop

for data in train_input.split(args.batch_size):
 # Make 1d sequences from the images
 sequences = tensor2seq(data)
 nb, len = sequences.size(0), sequences.size(1)

 # Select a random index in each sequence, this is our targets
 idx = torch.randint(len, (nb, 1), device = device)
 targets = sequences.gather(1, idx).view(-1)

 # Create masks and values accordingly
 tics = torch.arange(len, device = device).view(1, -1).expand(nb, -1)
 masks = seq2tensor((tics < idx.expand(-1, len)).float())
 values = (data.float() - mu) / std * masks

 # Make the input, set the mask and values as two channels
 input = torch.cat((masks, values), 1)

 # Compute the loss and make the gradient step
 output = model(input)
 loss = cross_entropy(output, targets)

 optimizer.zero_grad()
 loss.backward()
 optimizer.step()

Synthesis

nb = 48
generated = torch.zeros((nb,) + train_input.shape[1:],
 device = device, dtype = torch.int64)
sequences = tensor2seq(generated)
tics = torch.arange(sequences.size(1), device = device).view(1, -1).expand(nb, -1)

for t in range(sequences.size(1)):
 masks = seq2tensor((tics < t).float())
 values = (seq2tensor(sequences).float() - mu) / std * masks
 input = torch.cat((masks, values), 1)
 output = model(input)
 dist = torch.distributions.categorical.Categorical(logits = output)
 sequences[:, t] = dist.sample()
Some generated images

Masks, generated pixels so far, and posterior on the next pixel to generate (red dot), as predicted by the model (logscale). White is 0 and black is 255.
The same generative process can be used for in-painting, by starting the process with available pixel values.

Original Input Several synthesis

Some remarks:

- The index ordering for the sampling is a design decision. It can be fixed during train and test, or be adaptive.

- Even when there is a clear metric structure on the value space, best results are obtained with cross-entropy over a discretization of it.

 This is due in large part to the ability of categorical distributions and cross-entropy to deal with exotic posteriors, in particular multi-modal.

- The cross-entropy for a sample is \(\ell_n = -\log \hat{p}(y_n) \) hence \(e^{\ell_n} = \frac{1}{\hat{p}(y_n)} \).

 If the predicted posterior was uniform on \(N \) values, this loss value would correspond to \(N = e^{\ell_n} \). This is the perplexity and is often monitored as a more intuitive quantity.