Deep learning
 7.1. Transposed convolutions

François Fleuret
https://fleuret.org/dlc/

UNIVERSITÉ
DE GENÈVE

Constructing deep generative architectures requires layers to increase the signal dimension, the contrary of what we have done so far with feed-forward networks.

Constructing deep generative architectures requires layers to increase the signal dimension, the contrary of what we have done so far with feed-forward networks.

Some generative processes optimize the input, and as such rely on back-propagation to expend the signal from a low-dimension representation to the high-dimension signal space (e.g. lecture 9.4. "Optimizing inputs")

Constructing deep generative architectures requires layers to increase the signal dimension, the contrary of what we have done so far with feed-forward networks.

Some generative processes optimize the input, and as such rely on back-propagation to expend the signal from a low-dimension representation to the high-dimension signal space (e.g. lecture 9.4. "Optimizing inputs")

The same can be done in the forward pass with transposed convolution layers whose forward operation corresponds to a convolution layer's backward pass.

Consider a 1d convolution with a kernel κ

$$
\begin{aligned}
y_{i} & =(x \circledast \kappa)_{i} \\
& =\sum_{a} x_{i+a-1} \kappa_{a} \\
& =\sum_{u} x_{u} \kappa_{u-i+1} .
\end{aligned}
$$

Consider a 1d convolution with a kernel κ

$$
\begin{aligned}
y_{i} & =(x \circledast \kappa)_{i} \\
& =\sum_{a} x_{i+a-1} \kappa_{a} \\
& =\sum_{u} x_{u} \kappa_{u-i+1} .
\end{aligned}
$$

We get

$$
\begin{aligned}
{\left[\frac{\partial \ell}{\partial x}\right]_{u} } & =\frac{\partial \ell}{\partial x_{u}} \\
& =\sum_{i} \frac{\partial \ell}{\partial y_{i}} \frac{\partial y_{i}}{\partial x_{u}} \\
& =\sum_{i} \frac{\partial \ell}{\partial y_{i}} \kappa_{u-i+1}
\end{aligned}
$$

which looks a lot like a standard convolution layer, except that the kernel coefficients are visited in reverse order.

This is actually the standard convolution operator from signal processing. If $*$ denotes this operation, we have

$$
(x * \kappa)_{i}=\sum_{a} x_{a} \kappa_{i-a+1}
$$

This is actually the standard convolution operator from signal processing. If $*$ denotes this operation, we have

$$
(x * \kappa)_{i}=\sum_{a} x_{a} \kappa_{i-a+1}
$$

Coming back to the backward pass of the convolution layer, if

$$
y=x \circledast \kappa
$$

then

$$
\left[\frac{\partial \ell}{\partial x}\right]=\left[\frac{\partial \ell}{\partial y}\right] * \kappa
$$

In the deep-learning field, since it corresponds to transposing the weight matrix of the equivalent fully-connected layer, it is called a transposed convolution.

$$
\left(\begin{array}{ccccccc}
\kappa_{1} & \kappa_{2} & \kappa_{3} & 0 & 0 & 0 & 0 \\
0 & \kappa_{1} & \kappa_{2} & \kappa_{3} & 0 & 0 & 0 \\
0 & 0 & \kappa_{1} & \kappa_{2} & \kappa_{3} & 0 & 0 \\
0 & 0 & 0 & \kappa_{1} & \kappa_{2} & \kappa_{3} & 0 \\
0 & 0 & 0 & 0 & \kappa_{1} & \kappa_{2} & \kappa_{3}
\end{array}\right)^{\top}=\left(\begin{array}{ccccc}
\kappa_{1} & 0 & 0 & 0 & 0 \\
\kappa_{2} & \kappa_{1} & 0 & 0 & 0 \\
\kappa_{3} & \kappa_{2} & \kappa_{1} & 0 & 0 \\
0 & \kappa_{3} & \kappa_{2} & \kappa_{1} & 0 \\
0 & 0 & \kappa_{3} & \kappa_{2} & \kappa_{1} \\
0 & 0 & 0 & \kappa_{3} & \kappa_{2} \\
0 & 0 & 0 & 0 & \kappa_{3}
\end{array}\right)
$$

In the deep-learning field, since it corresponds to transposing the weight matrix of the equivalent fully-connected layer, it is called a transposed convolution.

$$
\left(\begin{array}{ccccccc}
\kappa_{1} & \kappa_{2} & \kappa_{3} & 0 & 0 & 0 & 0 \\
0 & \kappa_{1} & \kappa_{2} & \kappa_{3} & 0 & 0 & 0 \\
0 & 0 & \kappa_{1} & \kappa_{2} & \kappa_{3} & 0 & 0 \\
0 & 0 & 0 & \kappa_{1} & \kappa_{2} & \kappa_{3} & 0 \\
0 & 0 & 0 & 0 & \kappa_{1} & \kappa_{2} & \kappa_{3}
\end{array}\right)^{\top}=\left(\begin{array}{ccccc}
\kappa_{1} & 0 & 0 & 0 & 0 \\
\kappa_{2} & \kappa_{1} & 0 & 0 & 0 \\
\kappa_{3} & \kappa_{2} & \kappa_{1} & 0 & 0 \\
0 & \kappa_{3} & \kappa_{2} & \kappa_{1} & 0 \\
0 & 0 & \kappa_{3} & \kappa_{2} & \kappa_{1} \\
0 & 0 & 0 & \kappa_{3} & \kappa_{2} \\
0 & 0 & 0 & 0 & \kappa_{3}
\end{array}\right)
$$

A convolution can be seen as a series of inner products, a transposed convolution can be seen as a weighted sum of translated kernels.

Convolution layer

Input

Convolution layer

Convolution layer

Input

Output

Convolution layer

Input

Convolution layer

Input

Output

Transposed convolution layer

Input

Transposed convolution layer

Input

Transposed convolution layer

Transposed convolution layer

Transposed convolution layer

Transposed convolution layer

Input

Transposed convolution layer

Input

Output

F.conv_transpose1d implements the operation we just described. It takes as input a batch of multi-channel samples, and produces a batch of multi-channel samples.

We can compare on a simple 1d example the results of a standard and a transposed convolution:

```
>>> x = torch.tensor([[[0., 0., 1., 0., 0., 0., 0.]]])
>>> k = torch.tensor([[[1., 2., 3.]]])
>>> F.conv1d(x, k)
tensor([[[ 3., 2., 1., 0., 0.]]])
```

\qquad

``` *
```


F.conv_transpose1d implements the operation we just described. It takes as input a batch of multi-channel samples, and produces a batch of multi-channel samples.

We can compare on a simple 1d example the results of a standard and a transposed convolution:

```
>>> x = torch.tensor([[[0., 0., 1., 0., 0., 0., 0.]]])
>>> k = torch.tensor([[[1., 2., 3.]]])
>>> F.conv1d(x, k)
tensor([[[ 3., 2., 1., 0., 0.]]])
```


*


```
>>> F.conv_transpose1d(x, k)
tensor([[[ 0., 0., 1., 2., 3., 0., 0., 0., 0.]]])
```



```
*
```


The class nn. ConvTranspose1d embeds that operation into a nn.Module.

```
>>> x = torch.tensor([[[ 1., 0., 0., 0., -1.]]])
>>> m = nn.ConvTranspose1d(1, 1, kernel_size=3)
>>> with torch.autograd.no_grad():
... m.bias.zero_()
... m.weight.copy_(torch.tensor([ 1, 2, 1 ]))
..
Parameter containing:
tensor([0.], requires_grad=True)
Parameter containing:
tensor([[[1., 2., 1.]]], requires_grad=True)
>>> y = m(x)
>>> y
tensor([[[ 1., 2., 1., 0., -1., -2., -1.]]], grad_fn=<SqueezeBackward1>)
```

Transposed convolutions also have a dilation parameter that behaves as for convolution and expends the kernel size without increasing the number of parameters by making it sparse.

Transposed convolutions also have a dilation parameter that behaves as for convolution and expends the kernel size without increasing the number of parameters by making it sparse.

They also have a stride and padding parameters, however, due to the relation between convolutions and transposed convolutions:

While for convolutions stride and padding are defined in the input map, for transposed convolutions these parameters are defined in the output map, and the latter modulates a cropping operation.

Transposed convolution layer (stride $=2$)

Output

Transposed convolution layer (stride $=2$)

Output

Transposed convolution layer (stride $=2$)

Transposed convolution layer (stride $=2$)

Transposed convolution layer (stride $=2$)

1	2	-1

Transposed convolution layer (stride $=2$)

Transposed convolution layer (stride $=2$)

Output

The composition of a convolution and a transposed convolution of same parameters keep the signal size [roughly] unchanged.

!
A convolution with a stride greater than one may ignore parts of the signal. Its composition with the corresponding transposed convolution generates a map of the size of the observed area.

The composition of a convolution and a transposed convolution of same parameters keep the signal size [roughly] unchanged.

!
A convolution with a stride greater than one may ignore parts of the signal. Its composition with the corresponding transposed convolution generates a map of the size of the observed area.

For instance, a 1d convolution of kernel size w and stride s composed with the transposed convolution of same parameters maintains the signal size W, only if

$$
\exists q \in \mathbb{N}, W=w+s q
$$

It has been observed that transposed convolutions may create some grid-structure artifacts, since generated pixels are not all covered similarly.

For instance with a 4×4 kernel and stride 3

An alternative is to use an analytic up-scaling, implemented in the PyTorch functional F.interpolate.

```
>>> x = torch.tensor([[[[ 1., 2. ], [ 3., 4. ]]]])
>>> F.interpolate(x, scale_factor = 3, mode = 'bilinear')
tensor([[[[1.0000, 1.0000, 1.3333, 1.6667, 2.0000, 2.0000],
    [1.0000, 1.0000, 1.3333, 1.6667, 2.0000, 2.0000],
    [1.6667, 1.6667, 2.0000, 2.3333, 2.6667, 2.6667],
    [2.3333, 2.3333, 2.6667, 3.0000, 3.3333, 3.3333],
    [3.0000, 3.0000, 3.3333, 3.6667, 4.0000, 4.0000],
    [3.0000, 3.0000, 3.3333, 3.6667, 4.0000, 4.0000]]]])
```

An alternative is to use an analytic up-scaling, implemented in the PyTorch functional F.interpolate.

```
>>> x = torch.tensor([[[[ 1., 2. ], [ 3., 4. ]]]])
>>> F.interpolate(x, scale_factor = 3, mode = 'bilinear')
tensor([[[[1.0000, 1.0000, 1.3333, 1.6667, 2.0000, 2.0000],
    [1.0000, 1.0000, 1.3333, 1.6667, 2.0000, 2.0000],
    [1.6667, 1.6667, 2.0000, 2.3333, 2.6667, 2.6667],
    [2.3333, 2.3333, 2.6667, 3.0000, 3.3333, 3.3333],
    [3.0000, 3.0000, 3.3333, 3.6667, 4.0000, 4.0000],
    [3.0000, 3.0000, 3.3333, 3.6667, 4.0000, 4.0000]]]])
>>> F.interpolate(x, scale_factor = 3, mode = 'nearest')
tensor([[[[1., 1., 1., 2., 2., 2.],
    [1., 1., 1., 2., 2., 2.],
    [1., 1., 1., 2., 2., 2.],
    [3., 3., 3., 4., 4., 4.],
    [3., 3., 3., 4., 4., 4.],
    [3., 3., 3., 4., 4., 4.]]]])
```

Such module is usually combined with a convolution to learn local corrections to undesirable artifacts of the up-scaling.

In practice, a transposed convolution such as

```
tconv = nn.ConvTranspose2d(nic, noc,
    kernel_size = 3, stride = 2,
    padding = 1, output_padding = 1),
```

$y=t \operatorname{conv}(x)$

Such module is usually combined with a convolution to learn local corrections to undesirable artifacts of the up-scaling.

In practice, a transposed convolution such as

```
tconv = nn.ConvTranspose2d(nic, noc,
    kernel_size = 3, stride = 2,
    padding = 1, output_padding = 1),
```

$y=\operatorname{tconv}(x)$
can be replaced by
conv = nn.Conv2d(nic, noc, kernel_size = 3, padding = 1)
u = F.interpolate(x, scale_factor = 2, mode = 'bilinear')
$\mathrm{y}=\operatorname{conv}(\mathrm{u})$

The end

