Deep learning
 3.4. Multi-Layer Perceptrons

François Fleuret
https://fleuret.org/dlc/

UNIVERSITÉ
DE GENÈVE

A linear classifier of the form

$$
\begin{aligned}
\mathbb{R}^{D} & \rightarrow \mathbb{R} \\
x & \mapsto \sigma(w \cdot x+b),
\end{aligned}
$$

with $w \in \mathbb{R}^{D}, b \in \mathbb{R}$, and $\sigma: \mathbb{R} \rightarrow \mathbb{R}$, can naturally be extended to a multi-dimension output by applying a similar transformation to every output

$$
\begin{aligned}
\mathbb{R}^{D} & \rightarrow \mathbb{R}^{C} \\
x & \mapsto \sigma(w x+b),
\end{aligned}
$$

with $w \in \mathbb{R}^{C \times D}, b \in \mathbb{R}^{C}$, and σ is applied component-wise.

Even though it has no practical value implementation-wise, we can represent such a model as a combination of units. More importantly, we can extend it.

Even though it has no practical value implementation-wise, we can represent such a model as a combination of units. More importantly, we can extend it.

Even though it has no practical value implementation-wise, we can represent such a model as a combination of units. More importantly, we can extend it.

This latter structure can be formally defined, with $x^{(0)}=x$,

$$
\forall I=1, \ldots, L, x^{(I)}=\sigma\left(w^{(I)} x^{(I-1)}+b^{(I)}\right)
$$

and $f(x ; w, b)=x^{(L)}$.

This latter structure can be formally defined, with $x^{(0)}=x$,

$$
\forall I=1, \ldots, L, x^{(I)}=\sigma\left(w^{(I)} x^{(I-1)}+b^{(I)}\right)
$$

and $f(x ; w, b)=x^{(L)}$.

Such a model is a Multi-Layer Perceptron (MLP).

Note that if σ is an affine transformation, the full MLP is a composition of affine mappings, and itself an affine mapping.

Note that if σ is an affine transformation, the full MLP is a composition of affine mappings, and itself an affine mapping.

Consequently:

©
The activation function σ should not be affine. Otherwise the resulting MLP would be an affine mapping with a peculiar parametrization.

The two classical activation functions are the hyperbolic tangent

$$
x \mapsto \frac{2}{1+e^{-2 x}}-1
$$

The two classical activation functions are the hyperbolic tangent

$$
x \mapsto \frac{2}{1+e^{-2 x}}-1
$$

and the rectified linear unit (ReLU, Glorot et al., 2011)

$$
x \mapsto \max (0, x)
$$

Universal approximation

We can approximate any $\psi \in \mathscr{C}([a, b], \mathbb{R})$ with a linear combination of translated/scaled ReLU functions.

We can approximate any $\psi \in \mathscr{C}([a, b], \mathbb{R})$ with a linear combination of translated/scaled ReLU functions.

$$
f(x)=\sigma\left(w_{1} x+b_{1}\right)
$$

We can approximate any $\psi \in \mathscr{C}([a, b], \mathbb{R})$ with a linear combination of translated/scaled ReLU functions.

$$
f(x)=\sigma\left(w_{1} x+b_{1}\right)+\sigma\left(w_{2} x+b_{2}\right)
$$

We can approximate any $\psi \in \mathscr{C}([a, b], \mathbb{R})$ with a linear combination of translated/scaled ReLU functions.

$$
f(x)=\sigma\left(w_{1} x+b_{1}\right)+\sigma\left(w_{2} x+b_{2}\right)+\sigma\left(w_{3} x+b_{3}\right)
$$

We can approximate any $\psi \in \mathscr{C}([a, b], \mathbb{R})$ with a linear combination of translated/scaled ReLU functions.

$$
f(x)=\sigma\left(w_{1} x+b_{1}\right)+\sigma\left(w_{2} x+b_{2}\right)+\sigma\left(w_{3} x+b_{3}\right)+\ldots
$$

We can approximate any $\psi \in \mathscr{C}([a, b], \mathbb{R})$ with a linear combination of translated/scaled ReLU functions.

$$
f(x)=\sigma\left(w_{1} x+b_{1}\right)+\sigma\left(w_{2} x+b_{2}\right)+\sigma\left(w_{3} x+b_{3}\right)+\ldots
$$

We can approximate any $\psi \in \mathscr{C}([a, b], \mathbb{R})$ with a linear combination of translated/scaled ReLU functions.

$$
f(x)=\sigma\left(w_{1} x+b_{1}\right)+\sigma\left(w_{2} x+b_{2}\right)+\sigma\left(w_{3} x+b_{3}\right)+\ldots
$$

We can approximate any $\psi \in \mathscr{C}([a, b], \mathbb{R})$ with a linear combination of translated/scaled ReLU functions.

$$
f(x)=\sigma\left(w_{1} x+b_{1}\right)+\sigma\left(w_{2} x+b_{2}\right)+\sigma\left(w_{3} x+b_{3}\right)+\ldots
$$

We can approximate any $\psi \in \mathscr{C}([a, b], \mathbb{R})$ with a linear combination of translated/scaled ReLU functions.

$$
f(x)=\sigma\left(w_{1} x+b_{1}\right)+\sigma\left(w_{2} x+b_{2}\right)+\sigma\left(w_{3} x+b_{3}\right)+\ldots
$$

We can approximate any $\psi \in \mathscr{C}([a, b], \mathbb{R})$ with a linear combination of translated/scaled ReLU functions.

$$
f(x)=\sigma\left(w_{1} x+b_{1}\right)+\sigma\left(w_{2} x+b_{2}\right)+\sigma\left(w_{3} x+b_{3}\right)+\ldots
$$

We can approximate any $\psi \in \mathscr{C}([a, b], \mathbb{R})$ with a linear combination of translated/scaled ReLU functions.

$$
f(x)=\sigma\left(w_{1} x+b_{1}\right)+\sigma\left(w_{2} x+b_{2}\right)+\sigma\left(w_{3} x+b_{3}\right)+\ldots
$$

We can approximate any $\psi \in \mathscr{C}([a, b], \mathbb{R})$ with a linear combination of translated/scaled ReLU functions.

$$
f(x)=\sigma\left(w_{1} x+b_{1}\right)+\sigma\left(w_{2} x+b_{2}\right)+\sigma\left(w_{3} x+b_{3}\right)+\ldots
$$

We can approximate any $\psi \in \mathscr{C}([a, b], \mathbb{R})$ with a linear combination of translated/scaled ReLU functions.

$$
f(x)=\sigma\left(w_{1} x+b_{1}\right)+\sigma\left(w_{2} x+b_{2}\right)+\sigma\left(w_{3} x+b_{3}\right)+\ldots
$$

We can approximate any $\psi \in \mathscr{C}([a, b], \mathbb{R})$ with a linear combination of translated/scaled ReLU functions.

$$
f(x)=\sigma\left(w_{1} x+b_{1}\right)+\sigma\left(w_{2} x+b_{2}\right)+\sigma\left(w_{3} x+b_{3}\right)+\ldots
$$

We can approximate any $\psi \in \mathscr{C}([a, b], \mathbb{R})$ with a linear combination of translated/scaled ReLU functions.

$$
f(x)=\sigma\left(w_{1} x+b_{1}\right)+\sigma\left(w_{2} x+b_{2}\right)+\sigma\left(w_{3} x+b_{3}\right)+\ldots
$$

We can approximate any $\psi \in \mathscr{C}([a, b], \mathbb{R})$ with a linear combination of translated/scaled ReLU functions.

$$
f(x)=\sigma\left(w_{1} x+b_{1}\right)+\sigma\left(w_{2} x+b_{2}\right)+\sigma\left(w_{3} x+b_{3}\right)+\ldots
$$

This is true for other activation functions under mild assumptions.

Extending this result to any $\psi \in \mathscr{C}\left([0,1]^{D}, \mathbb{R}\right)$ requires a bit of work.
We can approximate the sin function with the previous scheme, and use the density of Fourier series to get the final result:

$$
\begin{aligned}
\forall \epsilon>0, \exists K, w \in \mathbb{R}^{K \times D}, b \in \mathbb{R}^{K}, \omega \in \mathbb{R}^{K}, \text { s.t. } \\
\max _{x \in[0,1]^{D}}|\psi(x)-\omega \cdot \sigma(w x+b)| \leq \epsilon
\end{aligned}
$$

So we can approximate any continuous function

$$
\psi:[0,1]^{D} \rightarrow \mathbb{R}
$$

with a one hidden layer perceptron

$$
x \mapsto \omega \cdot \sigma(w x+b)
$$

where $b \in \mathbb{R}^{K}, w \in \mathbb{R}^{K \times D}$, and $\omega \in \mathbb{R}^{K}$.

So we can approximate any continuous function

$$
\psi:[0,1]^{D} \rightarrow \mathbb{R}
$$

with a one hidden layer perceptron

$$
x \mapsto \omega \cdot \sigma(w x+b)
$$

where $b \in \mathbb{R}^{K}, w \in \mathbb{R}^{K \times D}$, and $\omega \in \mathbb{R}^{K}$.

This is the universal approximation theorem.

©
A better approximation requires a larger hidden layer (larger K), and this theorem says nothing about the relation between the two.

So this results states that we can make the training error as low as we want by using a larger hidden layer. It states nothing about the test error.

4
A better approximation requires a larger hidden layer (larger K), and this theorem says nothing about the relation between the two.

So this results states that we can make the training error as low as we want by using a larger hidden layer. It states nothing about the test error.

Deploying MLP in practice is often a balancing act between under-fitting and over-fitting.

The end

References

X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In International Conference on Artificial Intelligence and Statistics (AISTATS), 2011.

