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You want to hire someone, and you evaluate candidates by asking them ten
technical yes/no questions.

Would you feel confident if you interviewed one candidate and they make a
perfect score?

What about interviewing ten candidates and picking the best? What about
interviewing one thousand?

Here the candidates are our models and the questions are the training examples
used to pick the best one.
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With
Qn

k ∼ ℬ(0.5), n = 1, . . . , 1000, k = 1, . . . , 10,

independent standing for “candidate n answers question k correctly”, we have

∀n, P(∀k,Qn
k = 1) =

1

1024

and
P(∃n, ∀k,Qn

k = 1) ≃ 0.62.

So there is 62% chance that among 1, 000 candidates answering completely at
random, at least one will score perfectly.

Selecting a candidate based on a statistical estimator biases the said
estimator for that candidate. And you need a greater number of “competence
checks” if you have a larger pool of candidates.
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Over and under-fitting, capacity. K -nearest-neighbors
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A simple classification procedure is the “K -nearest neighbors.”

Given
(xn, yn) ∈ RD × {1, . . . ,C}, n = 1, . . . ,N

to predict the y associated to a new x , take the yn of the closest xn:

n∗(x) = argmin
n

∥xn − x∥

f ∗(x) = yn∗(x).

This recipe corresponds to K = 1, and makes the empirical training error zero.
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K = 1
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Under mild assumptions of regularities of µX ,Y , for N → ∞ the asymptotic
error rate of the 1-NN is less than twice the (optimal!) Bayes’ Error rate.

It can be made more stable by looking at the K > 1 closest training points, and
taking the majority vote.

If we let also K → ∞ “not too fast”, the error rate is the (optimal!) Bayes’
Error rate.
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Training set
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Prediction (K=1)
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Votes (K=51)
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Over and under-fitting, capacity, polynomials
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Given a polynomial model

∀x , α0, . . . , αD ∈ R, f (x ;α) =
D∑

d=0

αdx
d .

and training points (xn, yn) ∈ R2, n = 1, . . . ,N, the quadratic loss is

ℒ (α) =
∑
n

(f (xn;α)− yn)
2

=
∑
n

(
D∑

d=0

αdx
d
n − yn

)2

=

∥∥∥∥∥∥∥
 x01 . . . xD1

...
...

x0N . . . xDN


 α0

...
αD

−

 y1
...
yN


∥∥∥∥∥∥∥
2

.

Hence, minimizing this loss is a standard quadratic problem, for which we have
efficient algorithms.
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argmin
α

∥∥∥∥∥∥∥
 x01 . . . xD1

...
...

x0N . . . xDN


 α0

...
αD

−

 y1
...
yN


∥∥∥∥∥∥∥
2

def fit_polynomial(D, x, y):
# Broadcasting magic
X = x[:, None] ** torch.arange(0, D + 1)[None]

# Least square solution
return torch.linalg.lstsq(X, y).solution
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D, N = 4, 100
x = torch.linspace(-math.pi, math.pi, N)
y = x.sin()
alpha = fit_polynomial(D, x, y)

X = x[:, None] ** torch.arange(0, D + 1)[None]

y_hat = X @ alpha

for k in range(N):
print(x[k].item(), y[k].item(), y_hat[k].item())
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We can use this model to illustrate how the prediction changes when we
increase the degree or the regularization.
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We can visualize the influence of the noise by generating multiple training sets
𝒟1, . . . ,𝒟M with different noise, and training one model on each.
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We can reformulate this control of the degree with a penalty

ℒ (α) =
∑
n

(f (xn;α)− yn)
2 +

∑
d

ld (αd )

where

ld (α) =

{
0 if d ≤ D or α = 0

+∞ otherwise.

Such a penalty kills any term of degree > D.

This suggests more subtle variants. For instance, to keep all this quadratic

ℒ (α) =
∑
n

(f (xn;α)− yn)
2 + ρ

∑
d

α2
d .

François Fleuret Deep learning / 2.2. Over and under fitting 21 / 25



We can reformulate this control of the degree with a penalty

ℒ (α) =
∑
n

(f (xn;α)− yn)
2 +

∑
d

ld (αd )

where

ld (α) =

{
0 if d ≤ D or α = 0

+∞ otherwise.

Such a penalty kills any term of degree > D.

This suggests more subtle variants. For instance, to keep all this quadratic

ℒ (α) =
∑
n

(f (xn;α)− yn)
2 + ρ

∑
d

α2
d .

François Fleuret Deep learning / 2.2. Over and under fitting 21 / 25



0.0 0.2 0.4 0.6 0.8 1.0
−0.5

0.0

0.5

1.0

1.5

D = 9, ρ = 1× 101

f ∗

f

François Fleuret Deep learning / 2.2. Over and under fitting 22 / 25



0.0 0.2 0.4 0.6 0.8 1.0
−0.5

0.0

0.5

1.0

1.5

D = 9, ρ = 1× 100

f ∗

f

François Fleuret Deep learning / 2.2. Over and under fitting 22 / 25



0.0 0.2 0.4 0.6 0.8 1.0
−0.5

0.0

0.5

1.0

1.5

D = 9, ρ = 1× 10−1

f ∗

f

François Fleuret Deep learning / 2.2. Over and under fitting 22 / 25



0.0 0.2 0.4 0.6 0.8 1.0
−0.5

0.0

0.5

1.0

1.5

D = 9, ρ = 1× 10−2

f ∗

f

François Fleuret Deep learning / 2.2. Over and under fitting 22 / 25



0.0 0.2 0.4 0.6 0.8 1.0
−0.5

0.0

0.5

1.0

1.5

D = 9, ρ = 1× 10−3

f ∗

f

François Fleuret Deep learning / 2.2. Over and under fitting 22 / 25



0.0 0.2 0.4 0.6 0.8 1.0
−0.5

0.0

0.5

1.0

1.5

D = 9, ρ = 1× 10−4

f ∗

f

François Fleuret Deep learning / 2.2. Over and under fitting 22 / 25



0.0 0.2 0.4 0.6 0.8 1.0
−0.5

0.0

0.5

1.0

1.5

D = 9, ρ = 1× 10−5

f ∗

f

François Fleuret Deep learning / 2.2. Over and under fitting 22 / 25



0.0 0.2 0.4 0.6 0.8 1.0
−0.5

0.0

0.5

1.0

1.5

D = 9, ρ = 1× 10−6

f ∗

f

François Fleuret Deep learning / 2.2. Over and under fitting 22 / 25



0.0 0.2 0.4 0.6 0.8 1.0
−0.5

0.0

0.5

1.0

1.5

D = 9, ρ = 1× 10−7

f ∗

f

François Fleuret Deep learning / 2.2. Over and under fitting 22 / 25



0.0 0.2 0.4 0.6 0.8 1.0
−0.5

0.0

0.5

1.0

1.5

D = 9, ρ = 1× 10−8

f ∗

f

François Fleuret Deep learning / 2.2. Over and under fitting 22 / 25



0.0 0.2 0.4 0.6 0.8 1.0
−0.5

0.0

0.5

1.0

1.5

D = 9, ρ = 1× 10−9

f ∗

f

François Fleuret Deep learning / 2.2. Over and under fitting 22 / 25



0.0 0.2 0.4 0.6 0.8 1.0
−0.5

0.0

0.5

1.0

1.5

D = 9, ρ = 1× 10−10

f ∗

f

François Fleuret Deep learning / 2.2. Over and under fitting 22 / 25



0.0 0.2 0.4 0.6 0.8 1.0
−0.5

0.0

0.5

1.0

1.5

D = 9, ρ = 1× 10−11

f ∗

f

François Fleuret Deep learning / 2.2. Over and under fitting 22 / 25



0.0 0.2 0.4 0.6 0.8 1.0
−0.5

0.0

0.5

1.0

1.5

D = 9, ρ = 1× 10−12

f ∗

f

François Fleuret Deep learning / 2.2. Over and under fitting 22 / 25



0.0 0.2 0.4 0.6 0.8 1.0
−0.5

0.0

0.5

1.0

1.5

D = 9, ρ = 1× 10−13

f ∗

f

François Fleuret Deep learning / 2.2. Over and under fitting 22 / 25



0.0 0.2 0.4 0.6 0.8 1.0
−0.5

0.0

0.5

1.0

1.5

D = 9, ρ = 0

f ∗

f

François Fleuret Deep learning / 2.2. Over and under fitting 22 / 25



10−1310−1110−910−710−510−310−1101

ρ

10−3

10−2

E
rr

or
(M

S
E

)
Train

Test

François Fleuret Deep learning / 2.2. Over and under fitting 23 / 25



We define the capacity of a set of predictors as its ability to model an arbitrary
functional. This is a vague definition, difficult to make formal.

A mathematically precise notion is the Vapnik–Chervonenkis dimension of a set
of functions, which, in the Binary classification case, is the cardinality of the
largest set that can be labeled arbitrarily (Vapnik, 1995).

It is a very powerful concept, but is poorly adapted to neural networks. We will
not say more about it in this course.
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Although the capacity is hard to define precisely, it is quite clear in practice how
to modulate it for a given class of models.

In particular one can control over-fitting either by

• Reducing the space ℱ (less functionals, constrained or degraded
optimization), or

• Making the choice of f ∗ less dependent on data (penalty on coefficients,
margin maximization, ensemble methods).
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The end
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