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The general objective of machine learning is to capture regularity in data to
make predictions.

In our regression example, we modeled age and blood pressure as being linearly
related, to predict the latter from the former.

There are multiple types of inference that we can roughly split into three
categories:

• Classification (e.g. object recognition, cancer detection, speech
processing),

• regression (e.g. customer satisfaction, stock prediction, epidemiology), and

• density estimation (e.g. outlier detection, data visualization,
sampling/synthesis).
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The standard formalization for classification and regression considers a measure
of probability

µX ,Y

over the observation/value of interest, and i.i.d. training samples

(xn, yn), n = 1, . . . ,N,

and for density estimation
µX

and
xn, n = 1, . . .N.
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Intuitively, for classification a often intuitive interpretation is

µX ,Y (x , y) = µX |Y=y (x)P(Y = y)

that is, draw Y first, and given its value, generate X .

So the conditional distribution
µX |Y=y

stands for the distribution of the observable signal for the class y (e.g. “sound
of an /ē/”, “image of a cat”).
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For regression, one would interpret the joint law more naturally as

µX ,Y (x , y) = µY |X=x (y)µX (x)

which would be: first, generate X , and given its value, generate Y .

In the simple cases
Y = f (X ) + ϵ

where f is the deterministic dependency between x and y (e.g. affine), and ϵ is
a random noise, independent of X (e.g. Gaussian).
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With such a probabilistic perspective, we can more precisely define the three
types of inferences we introduced before:

Classification,

• (X ,Y ) random variables on 𝒵 = RD × {1, . . . ,C},
• we want to estimate argmaxy P(Y = y | X = x).

Regression,

• (X ,Y ) random variables on 𝒵 = RD × R,
• we want to estimate E(Y | X = x).

Density estimation,

• X random variable on 𝒵 = RD ,

• we want to estimate µX .
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The boundaries between these categories are fuzzy:

• Regression allows to do classification through class scores.

• Density models allow to do classification thanks to Bayes’ law.

etc.
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Risk, empirical risk
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Learning consists of finding in a set ℱ of functionals a “good” f ∗ (or its
parameters’ values) usually defined through a loss

𝓁 : ℱ ×𝒵 → R

such that 𝓁(f , z) increases with how wrong f is on z.

For instance

• for classification:
𝓁(f , (x , y)) = 1{f (x)̸=y},

• for regression:
𝓁(f , (x , y)) = (f (x)− y)2,

• for density estimation:

𝓁(q, z) = − log q(z).

The loss may include additional terms related to f itself.
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We are looking for an f with a small expected risk

R(f ) = EZ (𝓁(f ,Z)) ,

which means that our learning procedure would ideally choose

f ∗ = argmin
f∈ℱ

R(f ).

Although this quantity is unknown, if we have i.i.d. training samples

𝒟 = {Z1, . . . ,ZN} ,

we can compute an estimate, the empirical risk:

R̂(f ;𝒟 ) = Ê𝒟 (𝓁(f ,Z)) =
1

N

N∑
n=1

𝓁(f ,Zn).
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We have

EZ1,...,ZN

(
R̂(f ;𝒟 )

)
= EZ1,...,ZN

(
1

N

N∑
n=1

𝓁(f ,Zn)

)

=
1

N

N∑
n=1

EZn (𝓁(f ,Zn))

= EZ (𝓁(f ,Z))

= R(f ).

The empirical risk is an unbiased estimator of the expected risk.
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Finally, given 𝒟 , ℱ , and 𝓁, “learning” aims at computing

f ∗ = argmin
f∈ℱ

R̂(f ;𝒟 ).

• Can we bound R(f ) with R̂(f ;𝒟 )?

Yes if f is not chosen using 𝒟 . Since the Zn are independent, we just need
to take into account the variance of R̂(f ;𝒟 ).

• Can we bound R(f ∗) with R̂(f ∗;𝒟 )?

! Unfortunately not simply, and not without additional constraints on ℱ .

For instance if |ℱ | = 1, we can!
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Note that in practice, we call “loss” both the functional

𝓁 : ℱ ×𝒵 → R

and the empirical risk minimized during training

ℒ (f ) =
1

N

N∑
n=1

𝓁(f , zn).
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The end


	Risk, empirical risk

