
Deep learning

13.1. Attention for Memory and Sequence Translation

François Fleuret

https://fleuret.org/dlc/

https://fleuret.org/dlc/


In all the operations we have seen, such as fully connected layers, convolutions,
or poolings, the contribution of a value in the input tensor to a value in the
output tensor is entirely driven by their [relative] locations [in the tensor].

François Fleuret Deep learning / 13.1. Attention for Memory and Sequence Translation 1 / 21



However some tasks involve more than hierarchical structures, e.g. translation:

“An apple that had been on the tree in the garden for weeks had
finally been picked up.”

“Une pomme qui était sur l’arbre du jardin depuis des semaines
avait finalement été ramassée.”

It has motivated the development of attention-based processing to transport
information from parts of the signal to other parts dynamically identified.

François Fleuret Deep learning / 13.1. Attention for Memory and Sequence Translation 2 / 21



However some tasks involve more than hierarchical structures, e.g. translation:

“An apple that had been on the tree in the garden for weeks had
finally been picked up.”

“Une pomme qui était sur l’arbre du jardin depuis des semaines
avait finalement été ramassée.”

It has motivated the development of attention-based processing to transport
information from parts of the signal to other parts dynamically identified.

François Fleuret Deep learning / 13.1. Attention for Memory and Sequence Translation 2 / 21



Attention mechanisms aggregate features with an importance score that

• depends on the feature themselves, not on their positions in the tensor,

• relax locality constraints.

They modulate dynamically the weighting of different parts of a signal and allow
the representation and allocation of information channels to be dependent on
the activations themselves.

While they were developed to equip deep-learning models with memory-like
modules (Graves et al., 2014), their main use now is to provide long-term
dependency for sequence-to-sequence translation (Vaswani et al., 2017).

François Fleuret Deep learning / 13.1. Attention for Memory and Sequence Translation 3 / 21



Neural Turing Machine

François Fleuret Deep learning / 13.1. Attention for Memory and Sequence Translation 4 / 21



Graves et al. (2014) proposed to equip a deep model with an explicit memory to
allow for long-term storage and retrieval.

Figure 1: Neural Turing Machine Architecture. During each update cycle, the controller
network receives inputs from an external environment and emits outputs in response. It also
reads to and writes from a memory matrix via a set of parallel read and write heads. The dashed
line indicates the division between the NTM circuit and the outside world.

2013) (Bahdanau et al., 2014) and program search (Hochreiter et al., 2001b) (Das et al.,
1992), constructed with recurrent neural networks.

3 Neural Turing Machines
A Neural Turing Machine (NTM) architecture contains two basic components: a neural
network controller and a memory bank. Figure 1 presents a high-level diagram of the NTM
architecture. Like most neural networks, the controller interacts with the external world via
input and output vectors. Unlike a standard network, it also interacts with a memory matrix
using selective read and write operations. By analogy to the Turing machine we refer to the
network outputs that parametrise these operations as “heads.”

Crucially, every component of the architecture is differentiable, making it straightfor-
ward to train with gradient descent. We achieved this by defining ‘blurry’ read and write
operations that interact to a greater or lesser degree with all the elements in memory (rather
than addressing a single element, as in a normal Turing machine or digital computer). The
degree of blurriness is determined by an attentional “focus” mechanism that constrains each
read and write operation to interact with a small portion of the memory, while ignoring the
rest. Because interaction with the memory is highly sparse, the NTM is biased towards
storing data without interference. The memory location brought into attentional focus is
determined by specialised outputs emitted by the heads. These outputs define a normalised
weighting over the rows in the memory matrix (referred to as memory “locations”). Each
weighting, one per read or write head, defines the degree to which the head reads or writes

5

(Graves et al., 2014)

François Fleuret Deep learning / 13.1. Attention for Memory and Sequence Translation 5 / 21



The said module has an hidden internal state that takes the form of a tensor

Mt ∈ RN×M

where t is the time step, N is the number of entries in the memory and M is
their dimension.

A “controller” is implemented as a standard feed-forward or recurrent model
and at every iteration t it computes activations that modulate the reading /
writing operations.

François Fleuret Deep learning / 13.1. Attention for Memory and Sequence Translation 6 / 21



More formally, the memory module implements

• Reading, where given attention weights wt ∈ RN
+,

∑
n wt(n) = 1, it gets

rt =
N∑

n=1

wt(n)Mt(n).

• Writing, where given attention weights wt , an erase vector et ∈ [0, 1]M and
an add vector at ∈ RM the memory is updated with

∀n,Mt(n) = Mt−1(n)(1− wt(n)et) + wt(n)at .

The controller has multiple “heads”, and computes at each t, for each writing
head wt , et , at , and for each reading head wt , and gets back a read value rt .

François Fleuret Deep learning / 13.1. Attention for Memory and Sequence Translation 7 / 21



More formally, the memory module implements

• Reading, where given attention weights wt ∈ RN
+,

∑
n wt(n) = 1, it gets

rt =
N∑

n=1

wt(n)Mt(n).

• Writing, where given attention weights wt , an erase vector et ∈ [0, 1]M and
an add vector at ∈ RM the memory is updated with

∀n,Mt(n) = Mt−1(n)(1− wt(n)et) + wt(n)at .

The controller has multiple “heads”, and computes at each t, for each writing
head wt , et , at , and for each reading head wt , and gets back a read value rt .

François Fleuret Deep learning / 13.1. Attention for Memory and Sequence Translation 7 / 21



The vectors wt are themselves recurrent, and the controller can strengthen
them on certain key values, and/or shift them.

Figure 2: Flow Diagram of the Addressing Mechanism. The key vector, kt, and key
strength, βt, are used to perform content-based addressing of the memory matrix, Mt. The
resulting content-based weighting is interpolated with the weighting from the previous time step
based on the value of the interpolation gate, gt. The shift weighting, st, determines whether
and by how much the weighting is rotated. Finally, depending on γt, the weighting is sharpened
and used for memory access.

3.3 Addressing Mechanisms
Although we have now shown the equations of reading and writing, we have not described
how the weightings are produced. These weightings arise by combining two addressing
mechanisms with complementary facilities. The first mechanism, “content-based address-
ing,” focuses attention on locations based on the similarity between their current values
and values emitted by the controller. This is related to the content-addressing of Hopfield
networks (Hopfield, 1982). The advantage of content-based addressing is that retrieval is
simple, merely requiring the controller to produce an approximation to a part of the stored
data, which is then compared to memory to yield the exact stored value.

However, not all problems are well-suited to content-based addressing. In certain tasks
the content of a variable is arbitrary, but the variable still needs a recognisable name or ad-
dress. Arithmetic problems fall into this category: the variable x and the variable y can take
on any two values, but the procedure f(x, y) = x× y should still be defined. A controller
for this task could take the values of the variables x and y, store them in different addresses,
then retrieve them and perform a multiplication algorithm. In this case, the variables are
addressed by location, not by content. We call this form of addressing “location-based ad-
dressing.” Content-based addressing is strictly more general than location-based addressing
as the content of a memory location could include location information inside it. In our ex-
periments however, providing location-based addressing as a primitive operation proved
essential for some forms of generalisation, so we employ both mechanisms concurrently.

Figure 2 presents a flow diagram of the entire addressing system that shows the order
of operations for constructing a weighting vector when reading or writing.

7

(Graves et al., 2014)

François Fleuret Deep learning / 13.1. Attention for Memory and Sequence Translation 8 / 21



Results on the copy task

Figure 5: LSTM Generalisation on the Copy Task. The plots show inputs and outputs
for the same sequence lengths as Figure 4. Like NTM, LSTM learns to reproduce sequences
of up to length 20 almost perfectly. However it clearly fails to generalise to longer sequences.
Also note that the length of the accurate prefix decreases as the sequence length increases,
suggesting that the network has trouble retaining information for long periods.

Figure 6: NTM Memory Use During the Copy Task. The plots in the left column depict
the inputs to the network (top), the vectors added to memory (middle) and the corresponding
write weightings (bottom) during a single test sequence for the copy task. The plots on the right
show the outputs from the network (top), the vectors read from memory (middle) and the read
weightings (bottom). Only a subset of memory locations are shown. Notice the sharp focus of
all the weightings on a single location in memory (black is weight zero, white is weight one).
Also note the translation of the focal point over time, reflects the network’s use of iterative
shifts for location-based addressing, as described in Section 3.3.2. Lastly, observe that the read
locations exactly match the write locations, and the read vectors match the add vectors. This
suggests that the network writes each input vector in turn to a specific memory location during
the input phase, then reads from the same location sequence during the output phase.

13

 0

 2

 4

 6

 8

 10

 0  200  400  600  800  1000

c
o

s
t 

p
e

r 
s
e

q
u

e
n

c
e

 (
b

it
s
)

sequence number (thousands)

LSTM
NTM with LSTM Controller

NTM with Feedforward Controller

Figure 3: Copy Learning Curves.

rather than quantitative, difference in the way the two models solve the problem.
We also studied the ability of the networks to generalise to longer sequences than seen

during training (that they can generalise to novel vectors is clear from the training error).
Figures 4 and 5 demonstrate that the behaviour of LSTM and NTM in this regime is rad-
ically different. NTM continues to copy as the length increases2, while LSTM rapidly
degrades beyond length 20.

The preceding analysis suggests that NTM, unlike LSTM, has learned some form of
copy algorithm. To determine what this algorithm is, we examined the interaction between
the controller and the memory (Figure 6). We believe that the sequence of operations per-
formed by the network can be summarised by the following pseudocode:

initialise: move head to start location
while input delimiter not seen do

receive input vector
write input to head location
increment head location by 1

end while
return head to start location
while true do

read output vector from head location
emit output
increment head location by 1

end while

This is essentially how a human programmer would perform the same task in a low-
2The limiting factor was the size of the memory (128 locations), after which the cyclical shifts wrapped

around and previous writes were overwritten.

11

(Graves et al., 2014)

François Fleuret Deep learning / 13.1. Attention for Memory and Sequence Translation 9 / 21



Results on the N-gram task

Figure 14: Dynamic N-Gram Inference. The top row shows a test sequence from the N-Gram
task, and the rows below show the corresponding predictive distributions emitted by the optimal
estimator, NTM, and LSTM. In most places the NTM predictions are almost indistinguishable
from the optimal ones. However at the points indicated by the two arrows it makes clear
mistakes, one of which is explained in Figure 15. LSTM follows the optimal predictions closely
in some places but appears to diverge further as the sequence progresses; we speculate that this
is due to LSTM “forgetting” the observations at the start of the sequence.

Figure 15: NTM Memory Use During the Dynamic N-Gram Task. The red and green
arrows indicate point where the same context is repeatedly observed during the test sequence
(“00010” for the green arrows, “01111” for the red arrows). At each such point the same
location is accessed by the read head, and then, on the next time-step, accessed by the write
head. We postulate that the network uses the writes to keep count of the fraction of ones and
zeros following each context in the sequence so far. This is supported by the add vectors, which
are clearly anti-correlated at places where the input is one or zero, suggesting a distributed
“counter.” Note that the write weightings grow fainter as the same context is repeatedly seen;
this may be because the memory records a ratio of ones to zeros, rather than absolute counts.
The red box in the prediction sequence corresponds to the mistake at the first red arrow in
Figure 14; the controller appears to have accessed the wrong memory location, as the previous
context was “01101” and not “01111.”

20

 130

 135

 140

 145

 150

 155

 160

 0  200  400  600  800  1000

c
o

s
t 

p
e

r 
s
e

q
u

e
n

c
e

 (
b

it
s
)

sequence number (thousands)

LSTM
NTM with LSTM Controller

NTM with Feedforward Controller
Optimal Estimator

Figure 13: Dynamic N-Gram Learning Curves.

Bayesian analysis (Murphy, 2012):

P (B = 1|N1, N0, c) =
N1 +

1
2

N1 +N0 + 1
(10)

where c is the five bit previous context, B is the value of the next bit and N0 and N1 are
respectively the number of zeros and ones observed after c so far in the sequence. We can
therefore compare NTM to the optimal predictor as well as LSTM. To assess performance
we used a validation set of 1000 length 200 sequences sampled from the same distribu-
tion as the training data. As shown in Figure 13, NTM achieves a small, but significant
performance advantage over LSTM, but never quite reaches the optimum cost.

The evolution of the two architecture’s predictions as they observe new inputs is shown
in Figure 14, along with the optimal predictions. Close analysis of NTM’s memory usage
(Figure 15) suggests that the controller uses the memory to count how many ones and zeros
it has observed in different contexts, allowing it to implement an algorithm similar to the
optimal estimator.

4.5 Priority Sort
This task tests whether the NTM can sort data—an important elementary algorithm. A
sequence of random binary vectors is input to the network along with a scalar priority
rating for each vector. The priority is drawn uniformly from the range [-1, 1]. The target
sequence contains the binary vectors sorted according to their priorities, as depicted in
Figure 16.

Each input sequence contained 20 binary vectors with corresponding priorities, and
each target sequence was the 16 highest-priority vectors in the input.5 Inspection of NTM’s

5We limited the sort to size 16 because we were interested to see if NTM would solve the task using a
binary heap sort of depth 4.

19

(Graves et al., 2014)

François Fleuret Deep learning / 13.1. Attention for Memory and Sequence Translation 10 / 21



Figure 14: Dynamic N-Gram Inference. The top row shows a test sequence from the N-Gram
task, and the rows below show the corresponding predictive distributions emitted by the optimal
estimator, NTM, and LSTM. In most places the NTM predictions are almost indistinguishable
from the optimal ones. However at the points indicated by the two arrows it makes clear
mistakes, one of which is explained in Figure 15. LSTM follows the optimal predictions closely
in some places but appears to diverge further as the sequence progresses; we speculate that this
is due to LSTM “forgetting” the observations at the start of the sequence.

Figure 15: NTM Memory Use During the Dynamic N-Gram Task. The red and green
arrows indicate point where the same context is repeatedly observed during the test sequence
(“00010” for the green arrows, “01111” for the red arrows). At each such point the same
location is accessed by the read head, and then, on the next time-step, accessed by the write
head. We postulate that the network uses the writes to keep count of the fraction of ones and
zeros following each context in the sequence so far. This is supported by the add vectors, which
are clearly anti-correlated at places where the input is one or zero, suggesting a distributed
“counter.” Note that the write weightings grow fainter as the same context is repeatedly seen;
this may be because the memory records a ratio of ones to zeros, rather than absolute counts.
The red box in the prediction sequence corresponds to the mistake at the first red arrow in
Figure 14; the controller appears to have accessed the wrong memory location, as the previous
context was “01101” and not “01111.”

20

Figure 14: Dynamic N-Gram Inference. The top row shows a test sequence from the N-Gram
task, and the rows below show the corresponding predictive distributions emitted by the optimal
estimator, NTM, and LSTM. In most places the NTM predictions are almost indistinguishable
from the optimal ones. However at the points indicated by the two arrows it makes clear
mistakes, one of which is explained in Figure 15. LSTM follows the optimal predictions closely
in some places but appears to diverge further as the sequence progresses; we speculate that this
is due to LSTM “forgetting” the observations at the start of the sequence.

Figure 15: NTM Memory Use During the Dynamic N-Gram Task. The red and green
arrows indicate point where the same context is repeatedly observed during the test sequence
(“00010” for the green arrows, “01111” for the red arrows). At each such point the same
location is accessed by the read head, and then, on the next time-step, accessed by the write
head. We postulate that the network uses the writes to keep count of the fraction of ones and
zeros following each context in the sequence so far. This is supported by the add vectors, which
are clearly anti-correlated at places where the input is one or zero, suggesting a distributed
“counter.” Note that the write weightings grow fainter as the same context is repeatedly seen;
this may be because the memory records a ratio of ones to zeros, rather than absolute counts.
The red box in the prediction sequence corresponds to the mistake at the first red arrow in
Figure 14; the controller appears to have accessed the wrong memory location, as the previous
context was “01101” and not “01111.”

20

(Graves et al., 2014)

François Fleuret Deep learning / 13.1. Attention for Memory and Sequence Translation 11 / 21



Attention for seq2seq

François Fleuret Deep learning / 13.1. Attention for Memory and Sequence Translation 12 / 21



Given an input sequence x1, . . . , xT , the standard approach for sequence-
to-sequence translation (Sutskever et al., 2014) uses a recurrent model

ht = f (xt , ht−1),

and considers that the final hidden state

v = hT

carries enough information to drive an auto-regressive generative model

yt ∼ p (y1, . . . , yt−1, v) ,

itself implemented with another RNN.

François Fleuret Deep learning / 13.1. Attention for Memory and Sequence Translation 13 / 21



The main weakness of such an approach is that all the information has to flow
through a single state v , whose capacity has to accommodate any situation.

x1 x2 x3 x4 . . . xT−1 xT

v

y1 y2 y3 . . . yS

There are no direct “channels” to transport local information from the input
sequence to the place where it is useful in the resulting sequence.

François Fleuret Deep learning / 13.1. Attention for Memory and Sequence Translation 14 / 21



Attention mechanisms (Bahdanau et al., 2014) can transport information from
parts of the signal to other parts specified dynamically.

x1 x2 x3 x4 . . . xT−1 xT

y1 y2 y3 . . . yS

François Fleuret Deep learning / 13.1. Attention for Memory and Sequence Translation 15 / 21



Bahdanau et al. (2014) proposed to extend a standard recurrent model with
such a mechanism. They first run a bi-directionnal RNN to get a hidden state

hi = (h→i , h←i ), i = 1, . . . ,T .

From this, they compute a new process si , i = 1, . . . ,T which looks at
weighted averages of the hj , where the weights are functions of the signal.

François Fleuret Deep learning / 13.1. Attention for Memory and Sequence Translation 16 / 21



Given y1, . . . , yi−1 and s1, . . . , si−1 first compute an attention

∀j , αi,j = softmaxj a(si−1, hj )

where a is a one hidden layer tanh MLP (this is “additive attention”, or
“concatenation”).

Then compute the context vector from the hs

ci =
T∑
j=1

αi,jhj .

François Fleuret Deep learning / 13.1. Attention for Memory and Sequence Translation 17 / 21



The model can now make the prediction

si = f (si−1, yi−1, ci )

yi ∼ g(yi−1, si , ci )

where f is a GRU (Cho et al., 2014).

This is context attention where si−1 modulates what to look at in h1, . . . , hT
to compute si and sample yi .

François Fleuret Deep learning / 13.1. Attention for Memory and Sequence Translation 18 / 21



The model can now make the prediction

si = f (si−1, yi−1, ci )

yi ∼ g(yi−1, si , ci )

where f is a GRU (Cho et al., 2014).

This is context attention where si−1 modulates what to look at in h1, . . . , hT
to compute si and sample yi .

François Fleuret Deep learning / 13.1. Attention for Memory and Sequence Translation 18 / 21



x1 x2 x3 . . . xT−1 xT

h1 h2 h3 . . . hT−1 hT

RNN

s1 s2

y1 y2

a3,1 a3,2 a3,3 a3,T−1 a3,T. . .α3,1 α3,2 α3,3 α3,T−1 α3,T. . .

c3

s3

y3

François Fleuret Deep learning / 13.1. Attention for Memory and Sequence Translation 19 / 21



x1 x2 x3 . . . xT−1 xT

h1 h2 h3 . . . hT−1 hT

RNN

s1 s2

y1 y2

a3,1 a3,2 a3,3 a3,T−1 a3,T. . .α3,1 α3,2 α3,3 α3,T−1 α3,T. . .

c3

s3

y3

François Fleuret Deep learning / 13.1. Attention for Memory and Sequence Translation 19 / 21



x1 x2 x3 . . . xT−1 xT

h1 h2 h3 . . . hT−1 hT

RNN

s1 s2

y1 y2

a3,1 a3,2 a3,3 a3,T−1 a3,T. . .α3,1 α3,2 α3,3 α3,T−1 α3,T. . .

c3

s3

y3

François Fleuret Deep learning / 13.1. Attention for Memory and Sequence Translation 19 / 21



x1 x2 x3 . . . xT−1 xT

h1 h2 h3 . . . hT−1 hT

RNN

s1 s2

y1 y2

a3,1

a3,2 a3,3 a3,T−1 a3,T. . .α3,1 α3,2 α3,3 α3,T−1 α3,T. . .

c3

s3

y3

François Fleuret Deep learning / 13.1. Attention for Memory and Sequence Translation 19 / 21



x1 x2 x3 . . . xT−1 xT

h1 h2 h3 . . . hT−1 hT

RNN

s1 s2

y1 y2

a3,1 a3,2

a3,3 a3,T−1 a3,T. . .α3,1 α3,2 α3,3 α3,T−1 α3,T. . .

c3

s3

y3

François Fleuret Deep learning / 13.1. Attention for Memory and Sequence Translation 19 / 21



x1 x2 x3 . . . xT−1 xT

h1 h2 h3 . . . hT−1 hT

RNN

s1 s2

y1 y2

a3,1 a3,2 a3,3

a3,T−1 a3,T. . .α3,1 α3,2 α3,3 α3,T−1 α3,T. . .

c3

s3

y3

François Fleuret Deep learning / 13.1. Attention for Memory and Sequence Translation 19 / 21



x1 x2 x3 . . . xT−1 xT

h1 h2 h3 . . . hT−1 hT

RNN

s1 s2

y1 y2

a3,1 a3,2 a3,3 a3,T−1 a3,T. . .

α3,1 α3,2 α3,3 α3,T−1 α3,T. . .

c3

s3

y3

François Fleuret Deep learning / 13.1. Attention for Memory and Sequence Translation 19 / 21



x1 x2 x3 . . . xT−1 xT

h1 h2 h3 . . . hT−1 hT

RNN

s1 s2

y1 y2

a3,1 a3,2 a3,3 a3,T−1 a3,T. . .

α3,1 α3,2 α3,3 α3,T−1 α3,T. . .

c3

s3

y3

François Fleuret Deep learning / 13.1. Attention for Memory and Sequence Translation 19 / 21



x1 x2 x3 . . . xT−1 xT

h1 h2 h3 . . . hT−1 hT

RNN

s1 s2

y1 y2

a3,1 a3,2 a3,3 a3,T−1 a3,T. . .

α3,1 α3,2 α3,3 α3,T−1 α3,T. . .

c3

s3

y3

François Fleuret Deep learning / 13.1. Attention for Memory and Sequence Translation 19 / 21



x1 x2 x3 . . . xT−1 xT

h1 h2 h3 . . . hT−1 hT

RNN

s1 s2

y1 y2

a3,1 a3,2 a3,3 a3,T−1 a3,T. . .

α3,1 α3,2 α3,3 α3,T−1 α3,T. . .

c3

s3

y3

François Fleuret Deep learning / 13.1. Attention for Memory and Sequence Translation 19 / 21



x1 x2 x3 . . . xT−1 xT

h1 h2 h3 . . . hT−1 hT

RNN

s1 s2

y1 y2

a3,1 a3,2 a3,3 a3,T−1 a3,T. . .

α3,1 α3,2 α3,3 α3,T−1 α3,T. . .

c3

s3

y3

François Fleuret Deep learning / 13.1. Attention for Memory and Sequence Translation 19 / 21



Published as a conference paper at ICLR 2015

0 10 20 30 40 50 60

Sentence length

0

5

10

15

20

25

30

B
L

E
U

sc
or

e

RNNsearch-50

RNNsearch-30

RNNenc-50

RNNenc-30

Figure 2: The BLEU scores
of the generated translations
on the test set with respect
to the lengths of the sen-
tences. The results are on
the full test set which in-
cludes sentences having un-
known words to the models.

2012 and news-test-2013 to make a development (validation) set, and evaluate the models on the test
set (news-test-2014) from WMT ’14, which consists of 3003 sentences not present in the training
data.

After a usual tokenization6, we use a shortlist of 30,000 most frequent words in each language to
train our models. Any word not included in the shortlist is mapped to a special token ([UNK]). We
do not apply any other special preprocessing, such as lowercasing or stemming, to the data.

4.2 MODELS

We train two types of models. The first one is an RNN Encoder–Decoder (RNNencdec, Cho et al.,
2014a), and the other is the proposed model, to which we refer as RNNsearch. We train each model
twice: first with the sentences of length up to 30 words (RNNencdec-30, RNNsearch-30) and then
with the sentences of length up to 50 word (RNNencdec-50, RNNsearch-50).

The encoder and decoder of the RNNencdec have 1000 hidden units each.7 The encoder of the
RNNsearch consists of forward and backward recurrent neural networks (RNN) each having 1000
hidden units. Its decoder has 1000 hidden units. In both cases, we use a multilayer network with a
single maxout (Goodfellow et al., 2013) hidden layer to compute the conditional probability of each
target word (Pascanu et al., 2014).

We use a minibatch stochastic gradient descent (SGD) algorithm together with Adadelta (Zeiler,
2012) to train each model. Each SGD update direction is computed using a minibatch of 80 sen-
tences. We trained each model for approximately 5 days.

Once a model is trained, we use a beam search to find a translation that approximately maximizes the
conditional probability (see, e.g., Graves, 2012; Boulanger-Lewandowski et al., 2013). Sutskever
et al. (2014) used this approach to generate translations from their neural machine translation model.

For more details on the architectures of the models and training procedure used in the experiments,
see Appendices A and B.

5 RESULTS

5.1 QUANTITATIVE RESULTS

In Table 1, we list the translation performances measured in BLEU score. It is clear from the table
that in all the cases, the proposed RNNsearch outperforms the conventional RNNencdec. More
importantly, the performance of the RNNsearch is as high as that of the conventional phrase-based
translation system (Moses), when only the sentences consisting of known words are considered.
This is a significant achievement, considering that Moses uses a separate monolingual corpus (418M
words) in addition to the parallel corpora we used to train the RNNsearch and RNNencdec.

6 We used the tokenization script from the open-source machine translation package, Moses.
7 In this paper, by a ’hidden unit’, we always mean the gated hidden unit (see Appendix A.1.1).

5

(Bahdanau et al., 2014)

François Fleuret Deep learning / 13.1. Attention for Memory and Sequence Translation 20 / 21



Published as a conference paper at ICLR 2015

T
h
e

a
g
re

e
m

e
n
t

o
n

th
e

E
u
ro

p
e
a
n

E
co

n
o
m

ic

A
re

a

w
a
s

si
g
n
e
d

in A
u
g
u
st

1
9
9
2

. <
e
n
d
>

L'

accord

sur

la

zone

économique

européenne

a

été

signé

en

août

1992

.

<end>

It sh
o
u
ld

b
e

n
o
te

d
th

a
t

th
e

m
a
ri

n
e

e
n
v
ir

o
n
m

e
n
t

is th
e

le
a
st

kn
o
w

n
o
f

e
n
v
ir

o
n
m

e
n
ts

. <
e
n
d
>

Il
convient

de
noter

que
l'

environnement
marin

est
le

moins
connu

de
l'

environnement
.

<end>

(a) (b)

D
e
st

ru
ct

io
n

o
f

th
e

e
q
u
ip

m
e
n
t

m
e
a
n
s

th
a
t

S
y
ri

a
ca

n
n
o

lo
n
g
e
r

p
ro

d
u
ce

n
e
w

ch
e
m

ic
a
l

w
e
a
p
o
n
s

. <
e
n
d
>

La
destruction

de
l'

équipement
signifie

que
la

Syrie
ne

peut
plus

produire
de

nouvelles
armes

chimiques
.

<end>

" T
h
is

w
ill

ch
a
n
g
e

m
y

fu
tu

re
w

it
h

m
y

fa
m

ily
, " th

e
m

a
n

sa
id

. <
e
n
d
>

"
Cela

va
changer

mon
avenir

avec
ma

famille
"
,
a

dit
l'

homme
.

<end>

(c) (d)

Figure 3: Four sample alignments found by RNNsearch-50. The x-axis and y-axis of each plot
correspond to the words in the source sentence (English) and the generated translation (French),
respectively. Each pixel shows the weight αij of the annotation of the j-th source word for the i-th
target word (see Eq. (6)), in grayscale (0: black, 1: white). (a) an arbitrary sentence. (b–d) three
randomly selected samples among the sentences without any unknown words and of length between
10 and 20 words from the test set.

One of the motivations behind the proposed approach was the use of a fixed-length context vector
in the basic encoder–decoder approach. We conjectured that this limitation may make the basic
encoder–decoder approach to underperform with long sentences. In Fig. 2, we see that the perfor-
mance of RNNencdec dramatically drops as the length of the sentences increases. On the other hand,
both RNNsearch-30 and RNNsearch-50 are more robust to the length of the sentences. RNNsearch-
50, especially, shows no performance deterioration even with sentences of length 50 or more. This
superiority of the proposed model over the basic encoder–decoder is further confirmed by the fact
that the RNNsearch-30 even outperforms RNNencdec-50 (see Table 1).

6

(Bahdanau et al., 2014)

François Fleuret Deep learning / 13.1. Attention for Memory and Sequence Translation 21 / 21



The end



References

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to
align and translate. CoRR, abs/1409.0473, 2014.

K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk, and Y. Bengio.
Learning phrase representations using RNN encoder-decoder for statistical machine
translation. CoRR, abs/1406.1078, 2014.

A. Graves, G. Wayne, and I. Danihelka. Neural turing machines. CoRR, abs/1410.5401,
2014.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural
networks. In Neural Information Processing Systems (NIPS), pages 3104–3112, 2014.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.


	Neural Turing Machine
	Attention for seq2seq
	References

