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In all the operations we have seen, such as fully connected layers, convolutions,
or poolings, the contribution of a value in the input tensor to a value in the
output tensor is entirely driven by their [relative] locations [in the tensor].
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However some tasks involve more than hierarchical structures, e.g. translation:

“An apple that had been on the tree in the garden for weeks had
finally been picked up.”

“Une pomme qui était sur |'arbre du jardin depuis des semaines
avait finalement été ramassée.”
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However some tasks involve more than hierarchical structures, e.g. translation:

“An apple that had been on the tree in the garden for weeks had
finally been picked up.”

“Une pomme qui était sur |'arbre du jardin depuis des semaines
avait finalement été ramassée.”

It has motivated the development of attention-based processing to transport
information from parts of the signal to other parts dynamically identified.
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Attention mechanisms aggregate features with an importance score that

e depends on the feature themselves, not on their positions in the tensor,

e relax locality constraints.

They modulate dynamically the weighting of different parts of a signal and allow
the representation and allocation of information channels to be dependent on
the activations themselves.

While they were developed to equip deep-learning models with memory-like
modules (Graves et al., 2014), their main use now is to provide long-term
dependency for sequence-to-sequence translation (Vaswani et al., 2017).
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Neural Turing Machine
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Graves et al. (2014) proposed to equip a deep model with an explicit memory to
allow for long-term storage and retrieval.

External Input External Output
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(Graves et al., 2014)
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The said module has an hidden internal state that takes the form of a tensor
Mt c RNXM

where t is the time step, NV is the number of entries in the memory and M is
their dimension.

A ‘“controller” is implemented as a standard feed-forward or recurrent model
and at every iteration t it computes activations that modulate the reading /
writing operations.
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More formally, the memory module implements

¢ Reading, where given attention weights w; € Rﬂ, >oawe(n) =1, it gets

N

re = Z we(n)Me(n).

n=1

o Writing, where given attention weights w;, an erase vector e; € [0, 1]M and
an add vector a; € RM the memory is updated with

Vn, Me(n) = Me—1(n)(1 — we(n)er) + we(n)ar.
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More formally, the memory module implements

¢ Reading, where given attention weights w; € Rﬂ, >oawe(n) =1, it gets

N

re = Z we(n)Me(n).

n=1

o Writing, where given attention weights w;, an erase vector e; € [0, 1]M and
an add vector a; € RM the memory is updated with

Vn, Me(n) = Me—1(n)(1 — we(n)er) + we(n)ar.

The controller has multiple “heads”, and computes at each t, for each writing
head wt, e, at, and for each reading head wt, and gets back a read value r;.
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The vectors w; are themselves recurrent, and the controller can strengthen
them on certain key values, and/or shift them.
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Figure 2: Flow Diagram of the Addressing Mechanism. The key vector, ki, and key
strength, [, are used to perform content-based addressing of the memory matrix, M;. The
resulting content-based weighting is interpolated with the weighting from the previous time step
based on the value of the interpolation gate, g;. The shift weighting, s;, determines whether
and by how much the weighting is rotated. Finally, depending on 7, the weighting is sharpened
and used for memory access.

(Graves et al., 2014)
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Results on the copy task
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(Graves et al., 2014)
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Results on the N-gram task
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(Graves et al., 2014)
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Figure 15: NTM Memory Use During the Dynamic N-Gram Task. The red and green
arrows indicate point where the same context is repeatedly observed during the test sequence
(“00010" for the green arrows, “01111" for the red arrows). At each such point the same
location is accessed by the read head, and then, on the next time-step, accessed by the write
head. We postulate that the network uses the writes to keep count of the fraction of ones and
zeros following each context in the sequence so far. This is supported by the add vectors, which
are clearly anti-correlated at places where the input is one or zero, suggesting a distributed
“counter.” Note that the write weightings grow fainter as the same context is repeatedly seen;
this may be because the memory records a ratio of ones to zeros, rather than absolute counts.
The red box in the prediction sequence corresponds to the mistake at the first red arrow in
Figure 14; the controller appears to have accessed the wrong memory location, as the previous
context was “01101"” and not “01111."

(Graves et al., 2014)
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Attention for seq2seq
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Given an input sequence xi, ..., xT, the standard approach for sequence-
to-sequence translation (Sutskever et al., 2014) uses a recurrent model

he = f(x¢, he—1),
and considers that the final hidden state
v=hr
carries enough information to drive an auto-regressive generative model
ye~p(yi, s ye-1,v),

itself implemented with another RNN.
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The main weakness of such an approach is that all the information has to flow
through a single state v, whose capacity has to accommodate any situation.
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There are no direct “channels” to transport local information from the input
sequence to the place where it is useful in the resulting sequence.

Francois Fleuret Deep learning / 13.1. Attention for Memory and Sequence Translation 14 /21



Attention mechanisms (Bahdanau et al., 2014) can transport information from

parts of the signal to other parts specified dynamically.
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Bahdanau et al. (2014) proposed to extend a standard recurrent model with
such a mechanism. They first run a bi-directionnal RNN to get a hidden state

hi=(h7,ht), i=1,...,T.

From this, they compute a new process s;, i = 1,..., T which looks at
weighted averages of the h;, where the weights are functions of the signal.
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Given y1,...,y;_1 and s1,...,s;_1 first compute an attention
Vj, ajj = softmax; a(sj_1, hj)

where a is a one hidden layer tanh MLP (this is “additive attention”, or
“concatenation” ).

Then compute the context vector from the hs

T
Ci = E a,-,jhj.
j=1
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The model can now make the prediction

si=f(si—1,Yi—1,¢i)
yi ~ g(yi-1,5i, )

where f is a GRU (Cho et al., 2014).
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The model can now make the prediction

si=f(si—1,Yi—1,¢i)
yi ~ g(yi-1,5i, )

where f is a GRU (Cho et al., 2014).

This is context attention where s;_; modulates what to look at in hy,..., hT
to compute s; and sample y;.
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X1 X2 X3 cee XT-1 XT
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Figure 2: The BLEU scores
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(Bahdanau et al., 2014)
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(Bahdanau et al., 2014)
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The end
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