
Deep Learning

Practical Session 2

François Fleuret

https://fleuret.org/dlc/

March 12, 2023

Introduction

The objective of this session is to continue practicing with tensors, deal with a real data-set, and get a

feeling of how good/bad are the k-nearest neighbor rule and the PCA dimension reduction on MNIST

and CIFAR10.

The questions should be answered by writing a source file and executing it by running the python

command in a terminal, with the source file name as argument.

Both can be done from the main Jupyter window with.

• “New” → “Text file” to create the source code, or selecting the file and clicking “Edit” to edit
an existing one.

• “New” → “Terminal” to start a shell from which you can run python.

Another option is to connect to the VM on port 2022 on the host with a SSH client such as PuTTY1.

You can get a helpful python script at

https://fleuret.org/dlc/#prologue

To use it, your source should start with

import torch

from torch import Tensor

import dlc˙practical˙prologue as prologue

You are of course free to do without it.

1 Nearest neighbor

Write a function that gets a training set and a test sample and returns the label of the training point

the closest to the latter.

More precisely, write:

1https://www.putty.org/

1 of 3

https://fleuret.org/dlc/
https://fleuret.org/dlc/#prologue
https://www.putty.org/


def nearest˙classification(train˙input, train˙target, x):

where

• train˙input is a 2d float tensor of dimension n × d containing the training vectors,

• train˙target is a 1d long tensor of dimension n containing the training labels,

• x is 1d float tensor of dimension d containing the test vector,

and the returned value is the class of the train sample closest to x for the L2 norm.

Hint: The function should have no python loop, and may use in particular torch.mean, torch.view,

torch.pow, torch.sum, and torch.sort or torch.min. My version is 164 characters long.

2 Error estimation

Write a function

def compute˙nb˙errors(train˙input, train˙target, test˙input, test˙target,

mean = None, proj = None):

where

• train˙input is a 2d float tensor of dimension n × d containing the train vectors,

• train˙target is a 1d long tensor of dimension n containing the train labels,

• test˙input is a 2d float tensor of dimension m × d containing the test vectors,

• test˙target is a 1d long tensor of dimension m containing the test labels,

• mean is either None or a 1d float tensor of dimension d ,

• proj is either None or a 2d float tensor of dimension c × d ,

that subtracts mean (if it is not None) from the vectors of both train˙input and test˙input, apply

the operator proj (if it is not None) to both, and returns the number of classification errors using the

1-nearest-neighbor rule on the resulting data.

Hint: Use in particular torch.mm. My version is 487 characters long, and it has a loop (the horror!)

3 PCA

Write a function

def PCA(x):

where x is a 2d float tensor of dimension n× d , which returns a pair composed of the 1d mean vector
of dimension d and the PCA basis, ranked in decreasing order of the eigen-values, as a 2d tensor of

dimension d × d .

Hint: The function should have no python loop, and use in particular torch.eig, and torch.sort.

My version is 275 characters long.

2 of 3



4 Check that all this makes sense

Compare the performance of the 1-nearest neighbor rule on data projected either on a 100d random

subspace (i.e. using a basis generated with a normal) and using the PCA basis for different dimensions

(e.g. 3, 10, 50, 100).

Compare also the performance between MNIST and CIFAR. Does all this make sense?

3 of 3


	Nearest neighbor
	Error estimation
	PCA
	Check that all this makes sense

