
Deep learning

7.2. Deep Autoencoders

François Fleuret

https://fleuret.org/dlc/

https://fleuret.org/dlc/


Many applications such as image synthesis, denoising, super-resolution, speech
synthesis, compression, etc. require to go beyond classification and regression,
and model explicitly a high dimension signal.

This modeling consists of finding “meaningful degrees of freedom” that describe
the signal, and are of lesser dimension.

François Fleuret Deep learning / 7.2. Deep Autoencoders 1 / 19



Original space 𝒳

Latent space ℱ

f

g

François Fleuret Deep learning / 7.2. Deep Autoencoders 2 / 19

Notes

We consider here a toy 2d data-set. The struc-
ture of the population is a “thick” 1d manifold,
depicted as a green spiral.
Hence, there exists a mapping f which projects
the points into a so-called “latent” 1d space ℱ ,
so that two different point from the manifold
are mapped to two different points in the latent
space.



Original space 𝒳

Latent space ℱ

f

g

François Fleuret Deep learning / 7.2. Deep Autoencoders 3 / 19

Notes

A way of generating new points would be to gen-
erate points in that latent space, and to then
map them back to the original space with an-
other mapping g that approximate f −1 on the
manifold.



When dealing with real-world signals, this objective involves the same theoretical and
practical issues as for classification or regression: defining the right class of
high-dimension models, and optimizing them.

This motivates the use of deep architectures for signal synthesis.

François Fleuret Deep learning / 7.2. Deep Autoencoders 4 / 19

Notes

If we are given images of human faces, and we
want to generate new ones, it makes sense to try
to capture a small number of degrees of freedom
such as morphological aspects (e.g. shape of the
skull, color of the eyes, length of the nose) or
physical context (e.g. orientation in the image
plan, illumination).
Even though there may be many of them, there
are definitely less than the resolution of the image.
It is reasonable to think that a proper way of
synthesizing a human face would be to model a
hundred dimensions, so that given those hundred
dimensions, one would be able to generate one
million pixels.



Autoencoders

François Fleuret Deep learning / 7.2. Deep Autoencoders 5 / 19



An autoencoder maps a space to itself and is [close to] the identity on the data.

Dimension reduction can be achieved with an autoencoder composed of an encoder f
from the original space 𝒳 to a latent space ℱ , and a decoder g to map back to
𝒳 (Bourlard and Kamp, 1988; Hinton and Zemel, 1994).

Original space 𝒳

Latent space ℱ

f

g

If the latent space is of lower dimension, the autoencoder has to capture a “good”
parametrization, and in particular dependencies between components.

François Fleuret Deep learning / 7.2. Deep Autoencoders 6 / 19

Notes

The original space 𝒳 is of high dimension but
the data (in green) lies on a manifold of much
smaller dimension.
The encoder f maps the data to the latent space
and the decoder g maps the data back to the
original space.
The dimension of the latent space is a meta-
parameter of the overall model and has to be
chosen from prior knowledge or through trial-and-
error.



Let q be the data distribution over 𝒳 . A good autoencoder could be characterized with
the quadratic loss

EX∼q

[
∥X − g ◦ f (X )∥2

]
≃ 0.

Given two parametrized mappings f (· ;wf ) and g(· ;wg ), training consists of minimizing
an empirical estimate of that loss

ŵf , ŵg = argmin
wf ,wg

1

N

N∑
n=1

∥xn − g(f (xn;wf );wg )∥2 .

A simple example of such an autoencoder would be with both f and g linear, in which
case the optimal solution is given by PCA. Better results can be achieved with more
sophisticated classes of mappings, in particular deep architectures.

François Fleuret Deep learning / 7.2. Deep Autoencoders 7 / 19

Notes

Given x ∈ 𝒳 , f (x) is the projection in the latent
space, and g(f (x)) is its reconstruction back into
𝒳 .
We can say that (f , g) is a good autoencoder
when the expected error (here quadratic) between
a data sample and its reconstructed version is
small. This means that g ◦ f behaves like the
identity on the original dataset.



Deep Autoencoders

François Fleuret Deep learning / 7.2. Deep Autoencoders 8 / 19



A deep autoencoder combines an encoder composed of convolutional layers, with a
decoder composed of transposed convolutions or other interpolating layers. E.g. for
MNIST:

AutoEncoder (
(encoder): Sequential (

(0): Conv2d(1, 32, kernel_size=(5, 5), stride=(1, 1))
(1): ReLU (inplace)
(2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1))
(3): ReLU (inplace)
(4): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2))
(5): ReLU (inplace)
(6): Conv2d(32, 32, kernel_size=(3, 3), stride=(2, 2))
(7): ReLU (inplace)
(8): Conv2d(32, 8, kernel_size=(4, 4), stride=(1, 1))

)
(decoder): Sequential (

(0): ConvTranspose2d(8, 32, kernel_size=(4, 4), stride=(1, 1))
(1): ReLU (inplace)
(2): ConvTranspose2d(32, 32, kernel_size=(3, 3), stride=(2, 2))
(3): ReLU (inplace)
(4): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2))
(5): ReLU (inplace)
(6): ConvTranspose2d(32, 32, kernel_size=(5, 5), stride=(1, 1))
(7): ReLU (inplace)
(8): ConvTranspose2d(32, 1, kernel_size=(5, 5), stride=(1, 1))

)
)

François Fleuret Deep learning / 7.2. Deep Autoencoders 9 / 19

Notes

A deep autoencoder is an autoencoder in which
both the encoder and the decoder are deep mod-
els.
In this example as we will see in the next slide,
with a 1×28×28 sample as input, the output of
the encoder is 8 × 1 × 1, hence the latent space
is of dimension 8.
The dimension reduction in the encoder is
achieved with a stride of 2 in the convolutional
layers.
The decoder performs the computation in the
reverse order, each transposed convolution layer
corresponding to a convolution layer in the en-
coder.



Encoder

Tensor sizes / operations

1×28×28

nn.Conv2d(1, 32, kernel_size=5, stride=1)
28

×2432×24×24

nn.Conv2d(32, 32, kernel_size=5, stride=1)
24

×2032×20×20

nn.Conv2d(32, 32, kernel_size=4, stride=2)
20

×932×9×9

nn.Conv2d(32, 32, kernel_size=3, stride=2)
9

×432×4×4

nn.Conv2d(32, 8, kernel_size=4, stride=1)
4

×18×1×1

François Fleuret Deep learning / 7.2. Deep Autoencoders 10 / 19

Notes

This table shows the size of the internal activation
tensors in the encoder.
Each row represents the dimension of the input
tensor to a layer, and accounts for both the height
and the width, as images are squares.
The •s represent the locations where the filter is
applied, and show the stride.
The highlighted locations in green depicts the
last location and size of the convolutional filer,
and shows why the tensor size is reduced.
The double arrows above each grid is the dimen-
sion of the input tensor in the layer (number of
squares in the row), while the number below the
grid (preceded by ×) is the number of times the
filter could be moved to perform the convolution,
taking into account the filter size and the stride.
In the end, the encoder processes a 1 × 28 × 28
into a signal of size 8 × 1 × 1.



Decoder

Tensor sizes / operations

8×1×1

nn.ConvTranspose2d(8, 32, kernel_size=4, stride=1)
×1

432×4×4

nn.ConvTranspose2d(32, 32, kernel_size=3, stride=2)
×4

932×9×9

nn.ConvTranspose2d(32, 32, kernel_size=4, stride=2)
×9

2032×20×20

nn.ConvTranspose2d(32, 32, kernel_size=5, stride=1)
×20

2432×24×24

nn.ConvTranspose2d(32, 1, kernel_size=5, stride=1)
×24

281×28×28

François Fleuret Deep learning / 7.2. Deep Autoencoders 11 / 19

Notes

This table shows the size of the internal activation
tensors in the decoder.
Each row represents the dimension of the output
tensor from a layer, and accounts for both the
height and the width, as images are squares.
The •s represent the locations where the filter is
applied, and show the stride.
The highlighted locations in green depicts the
last location and size of the convolutional filer,
and shows why the tensor size is increased.
The number above the grid (preceded by ×) is
the number of times the filter could be moved
to perform the transposed convolution, while the
double arrow below each grid is the resulted di-
mension of the output tensor.



Training is achieved with quadratic loss and Adam

model = AutoEncoder(nb_channels, embedding_dim)

optimizer = optim.Adam(model.parameters(), lr = 1e-3)

for epoch in range(args.nb_epochs):
for input in train_input.split(batch_size):

z = model.encode(input)
output = model.decode(z)
loss = 0.5 * (output - input).pow(2).sum() / input.size(0)

optimizer.zero_grad()
loss.backward()
optimizer.step()

François Fleuret Deep learning / 7.2. Deep Autoencoders 12 / 19

Notes

embedding_dim is the number of channels at the
end of the encoder (8 in the previous slides).
Note that this an unsupervised training: the
labels of the samples are not used. The goal is
to model the density of the distribution of the
data.



X (original samples)

g ◦ f (X ) (CNN, d = 8)

g ◦ f (X ) (PCA, d = 8)

François Fleuret Deep learning / 7.2. Deep Autoencoders 13 / 19

Notes

The top images are some examples of original
test MNIST images.
The middle images are the outputs of the corre-
sponding original images as reconstructed when
they go thought the deep autoencoder descrbied
in the previous slides with a latent space of 8
dimensions
As a comparison, we show the projection with
PCA, by equalizing the dimension of the latent
space.
As expected, when a digit has an unusual shape,
the reconstructed image is less accurate. Some
statistically unusual details such as holes in the
lines are not reconstructed. Such details can
be reconstructed with a latent space of greater
dimensions.



To get an intuition of the latent representation, we can pick two samples x and x ′ at
random and interpolate samples along the line in the latent space

∀x , x ′ ∈ 𝒳 2, α ∈ [0, 1], ξ(x , x ′, α) = g((1− α)f (x) + αf (x ′)).

Original space 𝒳

Latent space ℱ

x x ′

f (x)

f (x ′)

f

g

François Fleuret Deep learning / 7.2. Deep Autoencoders 14 / 19



PCA interpolation (d = 32)

François Fleuret Deep learning / 7.2. Deep Autoencoders 15 / 19



Autoencoder interpolation (d = 8)

François Fleuret Deep learning / 7.2. Deep Autoencoders 16 / 19



And we can assess the generative capabilities of the decoder g by introducing a [simple]
density model qZ over the latent space ℱ , sample there, and map the samples into the
image space 𝒳 with g .

We can for instance use a Gaussian model with diagonal covariance matrix.

f (X ) ∼ 𝒩 (m̂, ∆̂)

where m̂ is a vector and ∆̂ a diagonal matrix, both estimated on training data.

Original space 𝒳

Latent space ℱ

g

François Fleuret Deep learning / 7.2. Deep Autoencoders 17 / 19



Autoencoder sampling (d = 8)

Autoencoder sampling (d = 16)

Autoencoder sampling (d = 32)

François Fleuret Deep learning / 7.2. Deep Autoencoders 18 / 19



These results are unsatisfying, because the density model used on the latent space ℱ is
too simple and inadequate.

Building a “good” model amounts to our original problem of modeling an empirical
distribution, although it may now be in a lower dimension space.

François Fleuret Deep learning / 7.2. Deep Autoencoders 19 / 19



References

H. Bourlard and Y. Kamp. Auto-association by multilayer perceptrons and singular value
decomposition. Biological Cybernetics, 59(4):291–294, 1988.

G. E. Hinton and R. S. Zemel. Autoencoders, minimum description length and helmholtz free
energy. In Neural Information Processing Systems (NIPS), pages 3–10, 1994.


	Autoencoders
	Deep Autoencoders
	References

