
Deep learning

7.1. Transposed convolutions

François Fleuret

https://fleuret.org/dlc/

https://fleuret.org/dlc/

Constructing deep generative architectures requires layers to increase the signal
dimension, the contrary of what we have done so far with feed-forward networks.

Some generative processes optimize the input, and as such rely on
back-propagation to expend the signal from a low-dimension representation to
the high-dimension signal space (e.g. lecture 9.4. “Optimizing inputs”)

The same can be done in the forward pass with transposed convolution layers
whose forward operation corresponds to a convolution layer’s backward pass.

François Fleuret Deep learning / 7.1. Transposed convolutions 1 / 14

Notes

The convolution layers that we have seen until
now usually reduce the size of the signal:

• either because the filter size (with no
additional padding) reduces the tensor on
the outside, or

• because the stride is greater than 1.

Hence they are useful to go from a high dimen-
sional signal (e.g. image, sound sample) to a
smaller one (e.g. vector of class scores).
The transposed convolution layers provides a way
of increasing the size of the signal, which is nec-
essary for generative tasks.

Consider a 1d convolution with a kernel κ

yi = (x ⊛ κ)i

=
∑
a

xi+a−1 κa

=
∑
u

xu κu−i+1.

We get [
∂𝓁

∂x

]
u

=
∂𝓁

∂xu

=
∑
i

∂𝓁

∂yi

∂yi

∂xu

=
∑
i

∂𝓁

∂yi
κu−i+1.

which looks a lot like a standard convolution layer, except that the kernel coefficients
are visited in reverse order.

François Fleuret Deep learning / 7.1. Transposed convolutions 2 / 14

Notes

Since x influences 𝓁 only through y , we have

∂𝓁

∂xu
=

∑
i

∂𝓁

∂yi

∂yi

∂xu
.

We see that ∑
u

xu κu−i+1

is very similar to∑
i

∂𝓁

∂yi
κu−i+1,

except that

• in the first case, the filter κ and the signal
x are visited in the same order, as indexed
by u, and

• in the second case, the derivative ∂𝓁
∂y and

the filter κ are visited in opposite
directions, as indexes by i . The filter is
“flipped” in this case.

This is actually the standard convolution operator from signal processing. If ∗ denotes
this operation, we have

(x ∗ κ)i =
∑
a

xa κi−a+1.

Coming back to the backward pass of the convolution layer, if

y = x ⊛ κ

then [
∂𝓁

∂x

]
=

[
∂𝓁

∂y

]
∗ κ.

François Fleuret Deep learning / 7.1. Transposed convolutions 3 / 14

In the deep-learning field, since it corresponds to transposing the weight matrix of the
equivalent fully-connected layer, it is called a transposed convolution.

κ1 κ2 κ3 0 0 0 0
0 κ1 κ2 κ3 0 0 0
0 0 κ1 κ2 κ3 0 0
0 0 0 κ1 κ2 κ3 0
0 0 0 0 κ1 κ2 κ3

⊤

=

κ1 0 0 0 0
κ2 κ1 0 0 0
κ3 κ2 κ1 0 0
0 κ3 κ2 κ1 0
0 0 κ3 κ2 κ1

0 0 0 κ3 κ2

0 0 0 0 κ3

A convolution can be seen as a series of inner products, a transposed convolution can
be seen as a weighted sum of translated kernels.

François Fleuret Deep learning / 7.1. Transposed convolutions 4 / 14

Convolution layer

Output

W − w + 1

1 2 0 -1

w

9

1 2 0 -1

w

0

1 2 0 -1

w

1

1 2 0 -1

w

3

1 2 0 -1

w

-5

1 2 0 -1

w

-3

1 2 0 -1

w

6

1 4 -1 0 2 -2 1 3 3 1

Input

W

Kernel

w

1 2 0 -1

François Fleuret Deep learning / 7.1. Transposed convolutions 5 / 14

Notes

This convolution can be re-written as the following matrix product

1 2 0 −1 0 0 0 0 0 0
0 1 2 0 −1 0 0 0 0 0
0 0 1 2 0 −1 0 0 0 0
0 0 1 2 0 −1 0 0 0 0
0 0 0 1 2 0 −1 0 0 0
0 0 0 0 1 2 0 −1 0 0
0 0 0 0 0 1 2 0 −1 0
0 0 0 0 0 0 1 2 0 −1

1
4

−1
0
2

−2
1
3
3
1

=

9
0
1
3

−5
−3
6

Transposed convolution layer

+

Output

W + w − 1

1 2 -11 2 -1

1 2 -1

1 2 -1

1 2 -1

Kernel

w

2 4 -2

3 6 -3

0 0 0

-1 -2 1

Input

W

2 3 0 -1

2 7 4

-4 -2 1

François Fleuret Deep learning / 7.1. Transposed convolutions 6 / 14

Notes

This transposed convolution can be formulated
as a matrix multiplication as follows:

1 0 0 0
2 1 0 0

−1 2 1 0
0 −1 2 1
0 0 −1 2
0 0 0 −1

 2

3
0

−1

 =

2
7
4

−4
−2
1

from which we can interpret as a weighted sum
of kernels.
And we also notice that the output dimension is
larger then the input one.

F.conv_transpose1d implements the operation we just described. It takes as input a
batch of multi-channel samples, and produces a batch of multi-channel samples.

We can compare on a simple 1d example the results of a standard and a transposed
convolution:

>>> x = torch.tensor([[[0., 0., 1., 0., 0., 0., 0.]]])
>>> k = torch.tensor([[[1., 2., 3.]]])
>>> F.conv1d(x, k)
tensor([[[3., 2., 1., 0., 0.]]])

⊛ =

>>> F.conv_transpose1d(x, k)
tensor([[[0., 0., 1., 2., 3., 0., 0., 0., 0.]]])

∗ =

François Fleuret Deep learning / 7.1. Transposed convolutions 7 / 14

Notes

The transposed convolution increases the signal
size and does not flip the filter shape.
So a standard convolution computes at every
location of a tensor the responses of linear filters,
and a transposed convolution computes at every
location a linear combination of kernels.

The class nn.ConvTranspose1d embeds that operation into a nn.Module.

>>> x = torch.tensor([[[1., 0., 0., 0., -1.]]])
>>> m = nn.ConvTranspose1d(1, 1, kernel_size=3)
>>> with torch.autograd.no_grad():
... m.bias.zero_()
... m.weight.copy_(torch.tensor([1, 2, 1]))
...
Parameter containing:
tensor([0.], requires_grad=True)
Parameter containing:
tensor([[[1., 2., 1.]]], requires_grad=True)
>>> y = m(x)
>>> y
tensor([[[1., 2., 1., 0., -1., -2., -1.]]], grad_fn=<SqueezeBackward1>)

François Fleuret Deep learning / 7.1. Transposed convolutions 8 / 14

Transposed convolutions also have a dilation parameter that behaves as for
convolution and expends the kernel size without increasing the number of parameters by
making it sparse.

They also have a stride and padding parameters, however, due to the relation
between convolutions and transposed convolutions:

!
While for convolutions stride and padding are defined in the input
map, for transposed convolutions these parameters are defined in the
output map, and the latter modulates a cropping operation.

François Fleuret Deep learning / 7.1. Transposed convolutions 9 / 14

Transposed convolution layer (stride = 2)

+

Output

s(W − 1) + w

1 2 -11 2 -1

1 2 -1

1 2 -1

1 2 -1

Kernel

w

2 4 -2

3 6 -3
s

0 0 0
s

-1 -2 1
s

Input

W

2 3 0 -1

2 4 1 6 -3 0

-1 -2 1

François Fleuret Deep learning / 7.1. Transposed convolutions 10 / 14

The composition of a convolution and a transposed convolution of same parameters
keep the signal size [roughly] unchanged.

!
A convolution with a stride greater than one may ignore parts of the
signal. Its composition with the corresponding transposed convolution
generates a map of the size of the observed area.

For instance, a 1d convolution of kernel size w and stride s composed with the
transposed convolution of same parameters maintains the signal size W , only if

∃q ∈ N, W = w + s q.

W

s s s w

François Fleuret Deep learning / 7.1. Transposed convolutions 11 / 14

It has been observed that transposed convolutions may create some grid-structure
artifacts, since generated pixels are not all covered similarly.

For instance with a 4× 4 kernel and stride 3

François Fleuret Deep learning / 7.1. Transposed convolutions 12 / 14

Notes

The level of gray of each square is proportional
to the number of filters that cover that location.
Darker is more visited.

An alternative is to use an analytic up-scaling, implemented in the PyTorch functional
F.interpolate.

>>> x = torch.tensor([[[[1., 2.], [3., 4.]]]])
>>> F.interpolate(x, scale_factor = 3, mode = 'bilinear')
tensor([[[[1.0000, 1.0000, 1.3333, 1.6667, 2.0000, 2.0000],

[1.0000, 1.0000, 1.3333, 1.6667, 2.0000, 2.0000],
[1.6667, 1.6667, 2.0000, 2.3333, 2.6667, 2.6667],
[2.3333, 2.3333, 2.6667, 3.0000, 3.3333, 3.3333],
[3.0000, 3.0000, 3.3333, 3.6667, 4.0000, 4.0000],
[3.0000, 3.0000, 3.3333, 3.6667, 4.0000, 4.0000]]]])

>>> F.interpolate(x, scale_factor = 3, mode = 'nearest')
tensor([[[[1., 1., 1., 2., 2., 2.],

[1., 1., 1., 2., 2., 2.],
[1., 1., 1., 2., 2., 2.],
[3., 3., 3., 4., 4., 4.],
[3., 3., 3., 4., 4., 4.],
[3., 3., 3., 4., 4., 4.]]]])

François Fleuret Deep learning / 7.1. Transposed convolutions 13 / 14

Such module is usually combined with a convolution to learn local corrections to
undesirable artifacts of the up-scaling.

In practice, a transposed convolution such as

tconv = nn.ConvTranspose2d(nic, noc,
kernel_size = 3, stride = 2,
padding = 1, output_padding = 1),

y = tconv(x)

can be replaced by

conv = nn.Conv2d(nic, noc, kernel_size = 3, padding = 1)

u = F.interpolate(x, scale_factor = 2, mode = 'bilinear')
y = conv(u)

François Fleuret Deep learning / 7.1. Transposed convolutions 14 / 14

