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Choosing the network structure is a difficult exercise. There is no silver bullet.

• Re-use something “well known, that works”, or at least start from there,

• split feature extraction / inference (although this is debatable),

• modulate the capacity until it overfits a small subset, but does not overfit /
underfit the full set,

• capacity increases with more layers, more channels, larger receptive fields,
or more units,

• regularization to reduce the capacity or induce sparsity,

• identify common paths for siamese-like,

• identify what path(s) or sub-parts need more/less capacity,

• use knowledge about the “scale of meaningful context” to size the filters,

• grid-search all the variations that come to mind (and hopefully have farms
of GPUs to do so).

We will re-visit this list with additional regularization / normalization methods.
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Notes

To assess that the capacity of the network is
sufficient, it should overfit at least on a small
subset of the training data. If it does not, the
capacity should be increased, e.g. more layers,
more channels.
Some paths of the network might need more ca-
pacity. For instance, if the samples come as pairs
of images and text, one may require more or less
capacity for the text part than for the image part,
depending on the expected complexity of the sig-
nal.
The network should be designed by taking into
account the “scale of meaningful context”: for
instance for object detection, if we have an idea
of the size of a face or a car to detect, this should

be reflected in the network. The last layer making
the prediction should have access to a sufficient
amount of information from the input signal (its
receptive field) to make that prediction.
Once the model is designed, a grid-search
over these hyper-parameters can be performed.
Among others:

• the number of filters, of layers,

• the learning rate(s),

• the optimizer,

• changing the backbone (architecture on
top of which we extend a new network),

• etc.



Regarding the learning rate, for training to succeed it has to

• reduce the loss quickly ⇒ large learning rate,

• not be trapped in a bad minimum ⇒ large learning rate,

• not bounce around in narrow valleys ⇒ small learning rate, and

• not oscillate around a minimum ⇒ small learning rate.

These constraints lead to a general policy of using a larger step size first, and a
smaller one in the end.

The practical strategy is to look at the losses and error rates across epochs and
pick a learning rate and learning rate adaptation. For instance by reducing it at
discrete pre-defined steps, or with a geometric decay.
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CIFAR10 data-set

32× 32 color images, 50, 000 train samples, 10, 000 test samples.

(Krizhevsky, 2009, chap. 3)
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Small convnet on CIFAR10, cross-entropy, batch size 100, η = 1e − 1.
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Notes

We train a small convnet on the CIFAR10 dataset
and show the training loss (left axis) and the test
accuracy (right axis).
This baseline result is obtained with a step size
of 0.1 with standard stochastic gradient descent.
Note that these results are used to illustrate the
learning rate policies and are not state-of-the-art.



Small convnet on CIFAR10, cross-entropy, batch size 100
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Notes

This plot shows the influence of the learning rate
on the training loss. We try 3 rates: 0.01, 0.1,
and 0.2.
The learning rate of 0.01 decreases the loss more
slowly than the other two.
The learning rate of 0.2 does as well as 0.1 at
start, but eventually does worse, probably because
it is trapped in a local minimum, or cannot go
into a “valley”.



Using η = 1e − 1 for 25 epochs, then reducing it.
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Notes

Here we illustrate the effect of reducing the learn-
ing rate during training.
The gray curve correspond to our baseline with
a constant learning rate of 0.1 all along.
After 25 epochs, we decrease the learning rate
down to 0.07, 0.05, or 0.02. In all cases, this
reduction has a dramatic effect on the loss which
from there decreases faster.



While the test error still goes down, the test loss may increase, as it gets even
worse on misclassified examples, and decreases less on the ones getting fixed.
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Notes

Here we look at the test accuracy in the best
case we saw before: a learning rate of 0.1 during
25 epochs, then 0.05 for 25 more epochs.
After 50 epochs, the test accuracy is above 70%,
which is better than in our baseline which was
below.
Interestingly, the test loss increases, although
the test accuracy still improves over the epochs,
which is counter intuitive.



We can plot the train and test distributions of the per-sample loss

𝓁 = − log

(
exp(fY (X ;w))∑
k exp(fk (X ;w))

)
through epochs to visualize the over-fitting.
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Notes

𝓁 is the loss on sample X given the current model
w . We plot the distribution of this loss over the
epochs. Y is the real class of X .
The red histogram is the histogram of the train
loss per sample while the blue histogram is the
histogram of the test loss per sample.
With

P̂y (x) =
exp(fy (x ;w))∑
k exp(fk (x ;w))

the left black vertical line corresponds to the loss
value for which P̂Y (X ;w) > 0.5, hence all sam-
ples on the left of that line are necessarily well
classified.
The right black vertical line is the loss value for
which P̂Y (X ;w) < 1

C (where C is the number
of classes), hence all samples on the right of that

vertical line are necessarily misclassified: there
is at least one other class the score of which is
greater than that of the true class.
In the middle of the two lines, we cannot say
anything whether the samples are well classified
or not.
As the training goes on, the distribution of the
training set is pushed to the left, meaning that
the training samples are well classified. We can
slowly see over-fitting occurring.
After epoch 15, we clearly see that some of
the test samples are really misclassified: the
histogram has drifted on the right part. This
explains why the test loss may increase: as the
training goes on, the already misclassified sam-
ples get even more misclassified, causing the test
loss to increase.
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