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We have motivated the use of a loss with a Bayesian formulation combining the
probability of the data given the model and the probability of the model

logµW (w | 𝒟 = d) = log µ𝒟 (d | W = w) + log µW (w)− logZ .

If µW is a Gaussian density with a covariance matrix proportional to the
identity, the log-prior log µW (w) results in a quadratic penalty

λ∥w∥22 = λ
∑
i

w2
i .

Since this penalty is convex, its sum with a convex functional is convex.

This is called the L2 regularization, or “weight decay” in the artificial neural
network community.
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Notes

The main effect of L2 regularization is to keep
the parameters near zero and to make them less
dependent on the data. Using such a penalty
leads to higher training error but a lesser gap
between training and test errors.



Increasing the λ parameter moves the optimal closer to 0, and away from the optimal
for the loss alone.

Since the derivative of ∥x∥22 is zero at zero, the optimal will never move there if it was
not already there.
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Notes

The red curve is a a function to illustrate the
behavior of increasing the L2 penalty term.
The green line shows the position of the mini-
mum.
Increasing the L2 penalty moves the optimum
closer to zero, but it will never reach it.



Convnet trained on MNIST with 1, 000 samples and a L2 penalty.

Error
λ Train Test

0.000 0.000 0.064
0.001 0.000 0.063
0.002 0.000 0.064
0.004 0.005 0.065
0.010 0.022 0.075
0.020 0.048 0.101

output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])

for p in model.parameters():
loss += lambda_l2 * p.pow(2).sum()

optimizer.zero_grad()
loss.backward()
optimizer.step()
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Notes

We train a LeNet on MNIST with a L2 penalty
weighted with various values λ.
As shown in the table, when λ increases, the gap
between the training and the test error gets better,
but when the regularization gets too important,
both errors get large.
The red plots show the cumulative distributions
of the weights. The larger λ, and the more the
weights are concentrated around zero.



We can apply the exact same scheme with a Laplace prior

µ(w) =
1

(2b)D
exp

(
−
∥w∥1
b

)

=
1

(2b)D
exp

(
−

1

b

D∑
d=1

|wd |
)

,

which results in a penalty term of the form

λ∥w∥1 = λ
∑
i

|wi |.

This is the L1 regularization. As for the L2, this penalty is convex, and its sum with a
convex functional is convex.
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Notes

As for the L2 penalty, the greater λ, the more
the weights will be pushed to 0.



An important property of the L1 penalty is that, if ℒ is convex, and

w∗ = argmin
w

ℒ (w) + λ∥w∥1

then

∀d ,
∣∣∣∣ ∂ℒ∂wd

(w∗)

∣∣∣∣ < λ ⇒ w∗
d = 0.
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In practice it means that this penalty pushes some of the variables to zero, but contrary
to the L2 penalty they actually move and remain there.

The λ parameter controls the sparsity of the solution.

+ =

+ =
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Notes

These graphs help to get an intuition of why the
optimal value can be moved to zero, and not
“closer” to zero.
On the top row, when λ is such that the slope
of the penalty (middle) is less steep than that of
the original loss (left), the optimal of their sum
(right) is not at zero.
On the bottom row, when λ is such that the
slope of the penalty (middle) is steeper than that
of the original loss (left), the optimal of their
sum (right) is at zero.



With the L1 penalty, the update rule becomes

wt+1 = wt − η (gt + λ sign(wt)) ,

where sign is applied per-component. This is almost identical to

w ′
t = wt − ηgt

wt+1 = w ′
t − ηλ sign(w ′

t ).

This update may overshoot, and result in a component of w ′
t strictly on one side of 0,

while the same component in wt+1 is strictly on the other.

While this is not a problem in principle, since wt will fluctuate around zero, it can be an
issue if the zeroed weights are handled in a specific manner (e.g. sparse coding to
reduce memory footprint or computation).
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The proximal operator prevents parameters from “crossing zero”, by adapting λ when it
is too large

w ′
t = wt − ηgt

wt+1 = w ′
t − ηmin(λ, |w ′

t |)⊙ sign(w ′
t ).

where min is component-wise, and ⊙ is the Hadamard component-wise product.
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Notes

Moving by min(λ, |w ′
t |) prevents oscillating

around 0: when the [absolute value of the] gradi-
ent is less than λ, the step is adapted to get to
0 and not overshoot.



Increasing the λ parameter moves the optimal closer to 0, and away from the optimal
for the loss without penalty.
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Notes

Each graph, shows in red for a certain λ the sum
of the loss

f : x 7→ (x − 1)2 +
1

6
(x − 1)3

and the L1 penalty, and with a green line its
minimum.
Increasing the weight λ of the L1 penalty moves
the optimum closer to zero, and when λ >
|f ′(0)| = 3/2, the penalty term is big enough,
and the minimum is at zero.



Convnet trained on MNIST with 1, 000 samples and a L1 penalty.

Error
λ Train Test

0.00000 0.000 0.064
0.00001 0.000 0.063
0.00002 0.000 0.067
0.00005 0.004 0.068
0.00010 0.087 0.128
0.00020 0.057 0.101
0.00050 0.496 0.516

output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])

optimizer.zero_grad()
loss.backward()
optimizer.step()

with torch.no_grad():
for p in model.parameters():

p.sub_(p.sign() * p.abs().clamp(max = lambda_l1))
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Notes

We train a LeNet on MNIST with a L1 penalty
weighted with various values λ.
Here we implement separately the update for
the penalty with the clamping of the proximal
operator abs().clamp(max = lambda_l1).
As shown in the table, when λ increases, the gap
between the training and the test error gets better,
but when the regularization gets too important,
both errors get large.
The red plots show the cumulative distributions
of the weights. The larger λ, and the more the
weights are concentrated around zero, with some
of them exactly set to zero. With a penalty of
λ = 5e − 4, 91% of the weights are null.



Penalties on the weights may be useful when dealing with small models and small
data-sets and are still standard when data is scarce.

While they have a limited impact for large-scale deep learning, they may still provide the
little push needed to beat baselines.
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