
Deep learning

5.1. Cross-entropy loss

François Fleuret

https://fleuret.org/dlc/

https://fleuret.org/dlc/

The usual form of a classification training set is

(xn, yn) ∈ RD × {1, . . . ,C}, n = 1, . . . ,N.

We can train on such a data-set with a regression loss such as the MSE using a
“one-hot vector” encoding: that converts labels into a tensor z ∈ RN×C , with

∀n, zn,m =

{
1 if m = yn
0 otherwise.

For instance, with N = 5 and C = 3, we would have
2
1
1
3
2




0 1 0
1 0 0
1 0 0
0 0 1
0 1 0

One-hot encoding
N

C

This can be done with F.one_hot.

François Fleuret Deep learning / 5.1. Cross-entropy loss 1 / 9

However, MSE is justified with a Gaussian noise around a target value that
makes sense geometrically. Beside being conceptually wrong for classification, in
practice it penalizes responses “too strongly on the right side”.

Consider this example with correct class 1, and two outputs ŷ and ŷ ′.

y ŷ ŷ ′(
1 0 0

) (
2 −1 −1

) (
0 1 1

)
Both ŷ and ŷ ′ have a MSE of 1, even though the ŷ leads to a perfect
prediction, and the ŷ ′ to a perfectly wrong one.

The criterion of choice for classification is the cross-entropy, which fixes these
inconsistencies.

François Fleuret Deep learning / 5.1. Cross-entropy loss 2 / 9

Notes

MSE is justified in an Euclidean space where the
distance to a target location is consistent with the
objective. But it does not really makes sense in
a classification context, because the class values
do not have any topological structure: we cannot
say that class “dog” is closer to class “school
bus” than to class “building”.
In this simple three-class example, the real class
is 1, corresponding to the one-hot vector y , and
we consider two predictions ŷ and ŷ ′.
The MSE between y and ŷ is

(2 − 1)2 + (−1 − 0)2 + (−1 − 0)2

3
= 1,

and the MSE between y and ŷ ′ is

(0 − 1)2 + (1 − 0)2 + (1 − 0)2

3
= 1.

Hence in a MSE sense, ŷ and ŷ ′ are “as bad”,
although the prediction with argmax, i.e. the
“winner takes all” decision rule, is class 1 for ŷ
and either class 2 or 3 for ŷ ′.

We can generalize the logistic regression to a multi-class setup with f1, . . . , fC
functionals that we interpret as logits

P(Y = y | X = x ,W = w) =
1

Z
exp fy (x ;w) =

exp fy (x ;w)∑
k exp fk (x ;w)

,

from which

logµW (w | 𝒟 = d)

= log
µ𝒟 (d | W = w)µW (w)

µ𝒟 (d)

= log µ𝒟 (d | W = w) + log µW (w)− logZ

=
∑
n

log µ𝒟 (xn, yn | W = w) + log µW (w)− logZ

=
∑
n

logP(Y = yn | X = xn,W = w) + log µW (w)− logZ ′

=
∑
n

log

(
exp fyn (x ;w)∑
k exp fk (x ;w)

)
︸ ︷︷ ︸

Depends on the outputs

+ log µW (w)︸ ︷︷ ︸
Depends on w

− logZ ′.

François Fleuret Deep learning / 5.1. Cross-entropy loss 3 / 9

If we ignore the penalty on w , it makes sense to minimize the average

ℒ (w) = −
1

N

N∑
n=1

log

(
exp fyn (xn;w)∑
k exp fk (xn;w)

)
︸ ︷︷ ︸

P̂w (Y=yn|X=xn)

.

Given two distributions p and q, their cross-entropy is defined as

H(p, q) = −Ep
[
log q

]
= −

∑
k

p(k) log q(k),

with the convention that 0 log 0 = 0. So we can re-write

− log

(
exp fyn (xn;w)∑
k exp fk (xn;w)

)
= − log P̂w (Y = yn | X = xn)

= −
∑
k

δyn (k) log P̂w (Y = k | X = xn)

= H
(
δyn , P̂w (Y = · | X = xn)

)
.

So ℒ above is the average of the cross-entropy between the deterministic “true”
posterior δyn and the estimated P̂w (Y = · | X = xn).

François Fleuret Deep learning / 5.1. Cross-entropy loss 4 / 9

This is what torch.nn.CrossEntropyLoss computes.

>>> f = torch.tensor([[-1., -3., 4.], [-3., 3., -1.]])
>>> target = torch.tensor([0, 1])
>>> criterion = torch.nn.CrossEntropyLoss()
>>> criterion(f, target)
tensor(2.5141)

and indeed

−
1

2

(
log

e−1

e−1 + e−3 + e4
+ log

e3

e−3 + e3 + e−1

)
≃ 2.5141.

The range of values is 0 for perfectly classified samples, log(C) if the posterior is
uniform, and up to +∞ if the posterior distribution is “worse” than uniform.

François Fleuret Deep learning / 5.1. Cross-entropy loss 5 / 9

Let’s consider the loss for a single sample in a two-class problem, with a predictor with
two output values.

MSE Cross-entropy

−4 −2 0 2 4

Correct unit activation

−4

−2

0

2

4

In
co

rr
ec

t
u

n
it

ac
ti

va
ti

on

0

10

20

30

40

50

60

70

−4 −2 0 2 4

Correct unit activation

−4

−2

0

2

4

In
co

rr
ec

t
u

n
it

ac
ti

va
ti

on

0

2

4

6

8

10

ℒ = (x − 1)2 + (y + 1)2 ℒ = − log
(

ex

ex+ey

)

MSE incorrectly penalizes outputs which are perfectly valid for prediction, contrary to
cross-entropy.

François Fleuret Deep learning / 5.1. Cross-entropy loss 6 / 9

Notes

We illustrate both the MSE loss and the cross-
entropy loss in a 2d binary problem: the x axis
represents the prediction for the correct class, and
the y axis is for the incorrect class. The ideal
case for MSE is to respond +1 for the correct
class, and −1 for the incorrect one.
As soon as the prediction goes away from
(+1,−1), which is center of the blue area, the
loss increases in an isotropic manner.
In particular, for a prediction of (4,−4) at the
bottom right, the loss is high, although the pre-
diction is very good: strongly positive for the
positive class, strongly negative for the negative
class. And yet, such a prediction is “penalized”
by the MSE loss, as much as e.g. (−2, 2), which
is a very bad prediction.
In contrast with the MSE loss, cross-entropy has
a nice behavior. As soon as there is a sufficient
difference between the response for the correct
class and that for the wrong one, the loss is small.

The cross-entropy loss can be seen as the composition of a “log soft-max” to normalize
the [logit] scores into logs of probabilities

(α1, . . . , αC) 7→
(
log

expα1∑
k expαk

, . . . , log
expαC∑
k expαk

)
,

which can be done with the torch.nn.LogSoftmax module, and a read-out of the
normalized score of the correct class

ℒ (w) = −
1

N

N∑
n=1

fyn (xn;w),

which is implemented by the torch.nn.NLLLoss criterion.

>>> f = torch.tensor([[-1., -3., 4.], [-3., 3., -1.]])
>>> target = torch.tensor([0, 1])
>>> model = nn.LogSoftmax(dim = 1)
>>> criterion = torch.nn.NLLLoss()
>>> criterion(model(f), target)
tensor(2.5141)

Hence, if a network should compute log-probabilities, it may have a
torch.nn.LogSoftmax final layer, and be trained with torch.nn.NLLLoss.

François Fleuret Deep learning / 5.1. Cross-entropy loss 7 / 9

Notes

In practice, if one wants to train a network so
that its output are normalized logs of probabilities,
then the last module of the network should be
nn.LogSoftmax, in which case the loss used for
training can be nn.NLLLoss.
If one just need to have logits, that is logs of
non-normalized probabilities, then the network
can be trained with nn.CrossEntropyLoss.

The mapping

(α1, . . . , αC) 7→
(

expα1∑
k expαk

, . . . ,
expαC∑
k expαk

)
is called soft-max since it computes a “soft arg-max Boolean label.”

>>> y = torch.tensor([[-10., -10., 10., -5.],
... [3., 0., 0., 0.],
... [1., 2., 3., 4.]])
>>> f = torch.nn.Softmax(1)
>>> f(y)
tensor([[2.0612e-09, 2.0612e-09, 1.0000e+00, 3.0590e-07],

[8.7005e-01, 4.3317e-02, 4.3317e-02, 4.3317e-02],
[3.2059e-02, 8.7144e-02, 2.3688e-01, 6.4391e-01]])

François Fleuret Deep learning / 5.1. Cross-entropy loss 8 / 9

PyTorch provides many other criteria, among which

• torch.nn.MSELoss

• torch.nn.CrossEntropyLoss

• torch.nn.NLLLoss

• torch.nn.L1Loss

• torch.nn.NLLLoss2d

• torch.nn.MultiMarginLoss

François Fleuret Deep learning / 5.1. Cross-entropy loss 9 / 9

