
Deep learning

4.5. Pooling

François Fleuret

https://fleuret.org/dlc/

https://fleuret.org/dlc/


The historical approach to compute a low-dimension signal (e.g. a few scores)
from a high-dimension one (e.g. an image) was to use pooling operations.

Such an operation aims at grouping several activations into a single “more
meaningful” one.

François Fleuret Deep learning / 4.5. Pooling 1 / 7



The most standard type of pooling is the max-pooling, which computes max
values over non-overlapping blocks.

For instance in 1d with a kernel of size 2:

Output

r

w

4

w

0

w

2

w

3

w

3

1 4 -1 0 2 -2 1 3 3 1

Input

r w

The average pooling computes average values per block instead of max values.

François Fleuret Deep learning / 4.5. Pooling 2 / 7



Input

Output

s

r

C

s h

r w

C

Pooling with a w × h kernel. Contrary to convolution, pooling is applied
independently on each channel. There are as many channels as output.

François Fleuret Deep learning / 4.5. Pooling 3 / 7



Pooling provides invariance to any permutation inside one of the cell.

More practically, it provides a pseudo-invariance to deformations that result into
local translations.

Input

Output

François Fleuret Deep learning / 4.5. Pooling 4 / 7



F.max_pool2d(input, kernel_size,
stride=None, padding=0, dilation=1,
ceil_mode=False, return_indices=False)

takes as input a N×C ×H×W tensor, and a kernel size (h,w) or k interpreted
as (k, k), applies the max-pooling on each channel of each sample separately,
and produces (if the padding is 0) a N × C × ⌊H/h⌋ × ⌊W /w⌋ output.

>>> x = torch.empty(1, 2, 2, 6).random_(3)
>>> x
tensor([[[[1., 2., 1., 1., 0., 2.],

[2., 1., 1., 0., 2., 0.]],

[[0., 2., 1., 1., 2., 2.],
[1., 1., 1., 1., 0., 0.]]]])

>>> F.max_pool2d(x, (1, 2))
tensor([[[[2., 1., 2.],

[2., 1., 2.]],

[[2., 1., 2.],
[1., 1., 0.]]]])

Similar functions implements 1d and 3d max-pooling, and average pooling.

François Fleuret Deep learning / 4.5. Pooling 5 / 7



As for convolution, pooling operations can be modulated through their stride
and padding.

While for convolution the default stride is 1, for pooling it is equal to the kernel
size, but this not obligatory.

Default padding is zero.

François Fleuret Deep learning / 4.5. Pooling 6 / 7



class torch.nn.MaxPool2d(kernel_size, stride=None,
padding=0, dilation=1,
return_indices=False, ceil_mode=False)

Wraps the max-pooling operation into a Module.

As for convolutions, the kernel size is either a pair (h,w) or a single value k
interpreted as (k, k).

François Fleuret Deep learning / 4.5. Pooling 7 / 7


