
Deep learning

4.1. DAG networks

François Fleuret

https://fleuret.org/dlc/

https://fleuret.org/dlc/


We can generalize an MLP

x ×

w(1)

+

b(1)

σ ×

w(2)

+

b(2)

σ f (x)

to an arbitrary “Directed Acyclic Graph” (DAG) of operators

x

ϕ(1)

ϕ(2)

f (x)ϕ(3)

w(1)

w(2)

François Fleuret Deep learning / 4.1. DAG networks 1 / 11

Notes

As before,

• activations (inputs, intermediate
activations, outputs) are in white,

• model parameters are in blue,

• operations are in green.

In a directed acyclic graph, there is an ordering of
the operations made along the edges that allows
to compute the final outputs from the inputs.



Forward pass

x(0) = x

x(1)ϕ(1)

x(2)ϕ(2)

f (x) = x(3)ϕ(3)

w(1)

w(2)

x(0) = x

x(1) = ϕ(1)(x(0);w (1))

x(2) = ϕ(2)(x(0), x(1);w (2))

f (x) = x(3) = ϕ(3)(x(1), x(2);w (1))

François Fleuret Deep learning / 4.1. DAG networks 2 / 11

Notes

DAGs are a simple and straight forward gener-
alization of the forward pass: starting from the
inputs, the computation is done in a forward
manner to obtain all the inputs required to each
operation nodes, until the output is reached.



If (a1, . . . , aQ) = ϕ(b1, . . . , bR), we use the notation

[
∂a

∂b

]
= J⊤ϕ =


∂a1
∂b1

. . .
∂aQ
∂b1

...
. . .

...
∂a1
∂bR

. . .
∂aQ
∂bR

 .

It does not specify at which point this is computed, but it will always be for the
forward-pass activations.

Also, if (a1, . . . , aQ) = ϕ(b1, . . . , bR , c1, . . . , cS ), we use

[
∂a

∂c

]
= J⊤ϕ|c =


∂a1
∂c1

. . .
∂aQ
∂c1

...
. . .

...
∂a1
∂cS

. . .
∂aQ
∂cS

 .

François Fleuret Deep learning / 4.1. DAG networks 3 / 11



Backward pass, derivatives w.r.t activations

x(0) = x

x(1)ϕ(1)

x(2)ϕ(2)

f (x) = x(3)ϕ(3)

w(1)

w(2)

[
∂𝓁

∂x(2)

]
=

[
∂x(3)

∂x(2)

][
∂𝓁

∂x(3)

]
= J⊤

ϕ(3)|x(2)

[
∂𝓁

∂x(3)

]
[

∂𝓁

∂x(1)

]
=

[
∂x(2)

∂x(1)

][
∂𝓁

∂x(2)

]
+

[
∂x(3)

∂x(1)

] [
∂𝓁

∂x(3)

]
= J⊤

ϕ(2)|x(1)

[
∂𝓁

∂x(2)

]
+ J⊤

ϕ(3)|x(1)

[
∂𝓁

∂x(3)

]
[

∂𝓁

∂x(0)

]
=

[
∂x(1)

∂x(0)

][
∂𝓁

∂x(1)

]
+

[
∂x(2)

∂x(0)

] [
∂𝓁

∂x(2)

]
= J⊤

ϕ(1)|x(0)

[
∂𝓁

∂x(1)

]
+ J⊤

ϕ(2)|x(0)

[
∂𝓁

∂x(2)

]

François Fleuret Deep learning / 4.1. DAG networks 4 / 11



Backward pass, derivatives w.r.t parameters

x(0) = x

x(1)ϕ(1)

x(2)ϕ(2)

f (x) = x(3)ϕ(3)

w(1)

w(2)

[
∂𝓁

∂w (1)

]
=

[
∂x(1)

∂w (1)

] [
∂𝓁

∂x(1)

]
+

[
∂x(3)

∂w (1)

][
∂𝓁

∂x(3)

]
= J⊤

ϕ(1)|w (1)

[
∂𝓁

∂x(1)

]
+ J⊤

ϕ(3)|w (1)

[
∂𝓁

∂x(3)

]
[

∂𝓁

∂w (2)

]
=

[
∂x(2)

∂w (2)

] [
∂𝓁

∂x(2)

]
= J⊤

ϕ(2)|w (2)

[
∂𝓁

∂x(2)

]

François Fleuret Deep learning / 4.1. DAG networks 5 / 11



So if we have a library of “tensor operators”, and implementations of

(x1, . . . , xd ,w) 7→ ϕ(x1, . . . , xd ;w)

∀c, (x1, . . . , xd ,w) 7→ Jϕ|xc (x1, . . . , xd ;w)

(x1, . . . , xd ,w) 7→ Jϕ|w (x1, . . . , xd ;w),

we can build any directed acyclic graph with these operators at the nodes, evaluate the
resulting mapping, and compute its gradient with back-prop.

François Fleuret Deep learning / 4.1. DAG networks 6 / 11



Writing from scratch a large neural network is complex and error-prone.

Multiple frameworks provide libraries of tensor operators and mechanisms to combine
them into DAGs and automatically differentiate them.

Language(s) License Main backer

PyTorch Python, C++ BSD Facebook

TensorFlow Python, C++ Apache Google

JAX Python Apache Google

MXNet Python, C++, R, Scala Apache Amazon

CNTK Python, C++ MIT Microsoft

Torch 7 Lua BSD Facebook

Theano Python BSD U. of Montreal

Caffe C++ BSD 2 clauses U. of CA, Berkeley

One approach is to define the nodes and edges of such a DAG statically (TensorFlow,
Torch 7, Caffe, Theano, etc.)

François Fleuret Deep learning / 4.1. DAG networks 7 / 11

Notes

These frameworks consist of:

• a back end in a low level language
(C/C++/CUDA) which directly interacts
with the hardware and the libraries which
pilot the hardware;

• a front end in a high level language

(usually Python because it has its own
ecosystem of libraries for plotting, machine
learning, signal processing, etc.) which
exposes to the AI developer the useful
modules.

Note that Torch 7, Theano, and Caffe are not
supported anymore.



In TensorFlow, to run a forward/backward pass on

x(0) = x

x(1)ϕ(1)

x(2)ϕ(2)

f (x) = x(3)ϕ(3)

w(1)

w(2)

ϕ(1)
(
x(0);w (1)

)
= w (1)x(0)

ϕ(2)
(
x(0), x(1);w (2)

)
= x(0) + w (2)x(1)

ϕ(3)
(
x(1), x(2);w (1)

)
= w (1)

(
x(1) + x(2)

)

w1 = tf.Variable(tf.random_normal([5, 5]))
w2 = tf.Variable(tf.random_normal([5, 5]))
x = tf.Variable(tf.random_normal([5, 1]))
x0 = x
x1 = tf.matmul(w1, x0)
x2 = x0 + tf.matmul(w2, x1)
x3 = tf.matmul(w1, x1 + x2)
q = tf.norm(x3)

gw1, gw2 = tf.gradients(q, [w1, w2])

with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
_gw1, _gw2 = sess.run([gw1, gw2])

François Fleuret Deep learning / 4.1. DAG networks 8 / 11

Notes

Note that before the line with tf.Session() as
sess:, no tensor operations have been executed.
The instructions only created a static graph. The
operations actually run when sess.run is inter-
preted.



Weight sharing

François Fleuret Deep learning / 4.1. DAG networks 9 / 11



In our generalized DAG formulation, we have allowed the same parameters to modulate
different parts of the processing.

For instance w (1) in our example parametrizes both ϕ(1) and ϕ(3).

x(0) = x

x(1)ϕ(1)

x(2)ϕ(2)

f (x) = x(3)ϕ(3)

w(1)

w(2)

This is called weight sharing.

François Fleuret Deep learning / 4.1. DAG networks 10 / 11



Weight sharing allows in particular to build Siamese networks where a full sub-network
is replicated several times.

x(0) = x

ψu × + σ u(1) × + σ u(2)

ψv × + σ v(1) × + σ v(2)

ϕ x(1)w(1) b(1) w(2) b(2)

François Fleuret Deep learning / 4.1. DAG networks 11 / 11

Notes

In the case of Siamese networks, which take as
input a pair of signals of the same type, the
reasoning behind weight sharing is that if a pro-
cessing is good for one element of the pair, it is
also good for the other element.
In the network depicted in that slide, we consider
that the initial input is a pair of elements and
that ψu and ψv extract one of the two elements.
Then, these two elements go through the same
processing before being re-combined by a final
processing Φ, that can for instance be a distance
measure.


	Weight sharing

