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The Linear Discriminant Analysis (LDA) algorithm provides a nice bridge
between these linear classifiers and probabilistic modeling.

Consider the following class populations

∀y ∈ {0, 1}, x ∈ RD ,

µX |Y=y (x) =
1√

(2π)D |Σ|
exp

(
−
1

2
(x −my )Σ

−1(x −my )
T

)
.

That is, they are Gaussian with the same covariance matrix Σ. This is the
homoscedasticity assumption.

Intuitively we can map data linearly to make all the covariance matrices identity,
there the Bayesian separation is a plan, so it is also in the original space.
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Notes

In other words, the populations have the same
ellipsoid shape, but are located at different places
in the space.



We have

P(Y = 1 | X = x) =
µX |Y=1(x)P(Y = 1)

µX (x)

=
µX |Y=1(x)P(Y = 1)

µX |Y=0(x)P(Y = 0) + µX |Y=1(x)P(Y = 1)

=
1

1 +
µX|Y=0(x)

µX|Y=1(x)
P(Y=0)
P(Y=1)

= σ

(
log

µX |Y=1(x)

µX |Y=0(x)
+ log

P(Y = 1)

P(Y = 0)

)
,

with

σ(x) =
1

1 + e−x
.
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So with our Gaussians µX |Y=y of same Σ, we get

P(Y = 1 | X = x)

= σ

(
log

µX |Y=1(x)

µX |Y=0(x)
+ log

P(Y = 1)

P(Y = 0)︸ ︷︷ ︸
Z

)

= σ
(
log µX |Y=1(x)− log µX |Y=0(x) + Z

)
= σ

(
−
1

2
(x −m1)Σ

−1(x −m1)
T +

1

2
(x −m0)Σ

−1(x −m0)
T + Z

)
= σ

(
−

1

2
xΣ−1xT +m1Σ

−1xT −
1

2
m1Σ

−1mT
1

+
1

2
xΣ−1xT −m0Σ

−1xT +
1

2
m0Σ

−1mT
0 + Z

)
= σ

(
(m1 −m0)Σ

−1︸ ︷︷ ︸
w

xT +
1

2

(
m0Σ

−1mT
0 −m1Σ

−1mT
1

)
+ Z︸ ︷︷ ︸

b

)

= σ(w · x + b).

The homoscedasticity makes the second-order terms vanish.
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Notes

The homoscedasticity assumption is key here to
make the quadratic term vanish.
Finally, P(Y = 1 | X = x) looks a lot like the
linear predictor previously seen, the perceptron.



µX |Y=0 µX |Y=1 P(Y = 1 | X = x)
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Notes

Each row is an illustration of the decision bound-
ary for different values of Σ, the means m0 and
m1 remaining the same.

• White stands for values close to 0, and
black for values close to 1.

• Column 1 depicts the distribution of class
0, that is µX|Y=0.

• Column 2 depicts the distribution of class
0, that is µX|Y=1.

• Column 3 depicts the posterior for a point
of being of class 1, P(Y = 1 | X = x);
the black area is the set of points which

are more likely to be of class 1, and by
symmetry, the white area is the set of
points which are more likely to be of class
0.

• Column 4 shows the set of points assigned
to class 1 (red area) and to class 0 (green
area). The threshold used is 0.5.

We see that the covariance drives the orientation
of the separation: (m1 − m0)Σ

−1, m0 and m1

being fixed here.
When the two populations have a different co-
variance (bottom row), the decision boundary is
no longer linear.



Note that the (logistic) sigmoid function

σ(x) =
1

1 + e−x
,

looks like a “soft heavyside”

0

1

So the overall model
f (x ;w , b) = σ(w · x + b)

looks very similar to the perceptron.
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Notes

In some sense, this model is a smooth version of
the hard threshold seen before with the percep-
tron.
We have a nice bridge between linear classifiers
and probabilistic models: LDA shows that in a
probabilistic context with a reasonable assump-
tion on the distribution of the data, we get a
decision function which is very close to the one
of the perceptron. It makes sense to have a
signed-like function applied to a linear expression
to make a decision.



We can use the model from LDA

f (x ;w , b) = σ(w · x + b)

but instead of modeling the densities and derive the values of w and b, directly
compute them by maximizing their probability given the training data.

First, to simplify the next slide, note that we have

1− σ(x) = 1−
1

1 + e−x
= σ(−x),

hence if Y takes value in {−1, 1} then

∀y ∈ {−1, 1}, P(Y = y | X = x) = σ(y(w · x + b)).
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Notes

Here, we assume we no longer have the formal
expression for the normal density, and we will
directly attack the problem with maximum likeli-
hood.



We have

log µW ,B(w , b | 𝒟 = d)

= log
µ𝒟 (d | W = w ,B = b)µW ,B(w , b)

µ𝒟 (d)

= log µ𝒟 (d | W = w ,B = b) + log µW ,B(w , b)− logZ

=
∑
n

log σ(yn(w · xn + b)) + log µW ,B(w , b)− logZ ′

This is the logistic regression, whose loss aims at minimizing

− log σ(ynf (xn)).
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Notes

We want to compute the likelihood of the param-
eters w and b given the training data.
As we did previously, log µ𝒟 (d) is constant w.r.t.
w and b, so we can simplify it with log Z .
We also have the assumption that the data points
are independent and identically distributed, so

log µ𝒟 (d | W = w ,B = b)

= log
∏
n

µ(xn, yn | W = w ,B = b)

= log
∏
n

P(Y = yn | X = xn,W = w ,B = b)

+ log
∏
n

µX (xn | W = w ,B = b)

=
∑
n

log σ(yn(w · xn + b)) + cst

So in the end, given training points, we cast the
estimation of the parameters of the linear model
as a Bayesian inference problem. Maximizing
log µW ,B (w , b | 𝒟 = d) boils down to minimiz-
ing − log σ(ynf (xn)).

• When the sample is well classified (the
response of a sample is on the right), its
loss is 0 and the sample is not penalized.

• When the sample is misclassified (the
response of a sample is on the left), its loss
increases linearly with how wrong it is.



Although the probabilistic and Bayesian formulations may be helpful in certain contexts,
the bulk of deep learning is disconnected from such modeling.

We will come back sometime to a probabilistic interpretation, but most of the methods
will be envisioned from the signal-processing and optimization angles.
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