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The general objective of machine learning is to capture regularity in data to
make predictions.

In our regression example, we modeled age and blood pressure as being linearly
related, to predict the latter from the former.

There are multiple types of inference that we can roughly split into three
categories:

• Classification (e.g. object recognition, cancer detection, speech
processing),

• regression (e.g. customer satisfaction, stock prediction, epidemiology), and

• density estimation (e.g. outlier detection, data visualization,
sampling/synthesis).
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Notes

The content of this lesson is not specific to deep learning but is fundamental: overfitting, capacity,
embeddings, etc.
We can classify inference methods in roughly three categories:

• In classification, we get a signal and we want to predict a discrete label, e.g.

Task Input Output

Object recognition Image Class label (“cat”, “dog”, etc.)

Cancer detection Gene expression “cancer” or “no cancer”

Speech processing Sound sample Word or phonem

• In regression, we get as input a signal and we want to predict a continuous quantity. Contrary
to classification there is a notion of metric on the value space.

Task Input Output

Customer Satisfaction Questionnaire Satisfaction ∈ [0, 5]

Stock prediction Past exchange rate Exchange rate tomorrow

• In density estimation, we try to capture the structure of the data, instead of predicting a single
value.

Task Input Output

Outlier detection Data point Is unlikely under the model

Image generation Gaussian noise image Synthetic realistic image



The standard formalization for classification and regression considers a measure
of probability

µX ,Y

over the observation/value of interest, and i.i.d. training samples

(xn, yn), n = 1, . . . ,N,

and for density estimation
µX

and
xn, n = 1, . . .N.
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Intuitively, for classification a often intuitive interpretation is

µX ,Y (x , y) = µX |Y=y (x)P(Y = y)

that is, draw Y first, and given its value, generate X .

So the conditional distribution
µX |Y=y

stands for the distribution of the observable signal for the class y (e.g. “sound
of an /ē/”, “image of a cat”).
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For regression, one would interpret the joint law more naturally as

µX ,Y (x , y) = µY |X=x (y)µX (x)

which would be: first, generate X , and given its value, generate Y .

In the simple cases
Y = f (X ) + ϵ

where f is the deterministic dependency between x and y (e.g. affine), and ϵ is
a random noise, independent of X (e.g. Gaussian).

François Fleuret Deep learning / 2.1. Loss and risk 4 / 12



With such a probabilistic perspective, we can more precisely define the three
types of inferences we introduced before:

Classification,

• (X ,Y ) random variables on 𝒵 = RD × {1, . . . ,C},
• we want to estimate argmaxy P(Y = y | X = x).

Regression,

• (X ,Y ) random variables on 𝒵 = RD × R,
• we want to estimate E(Y | X = x).

Density estimation,

• X random variable on 𝒵 = RD ,

• we want to estimate µX .
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Notes

The formulations above are for the vanilla and
simplest cases of classification, regression, and
density estimation.
In classification, what we want is to find, given a
sample x ∈ RD , the most likely class y that the
sample belongs to.
For instance, in the case of image classifica-
tion, many models process an input image
D ∼ 3 × 224 × 224, and there can be C = 1000
classes.
In regression, the quantity to predict can be in
high dimension and the target value not be the
conditional expectation but for instance a more
robust value that ignore long tails in the distribu-
tion.



The boundaries between these categories are fuzzy:

• Regression allows to do classification through class scores.

• Density models allow to do classification thanks to Bayes’ law.

etc.
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Risk, empirical risk
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Learning consists of finding in a set ℱ of functionals a “good” f ∗ (or its parameters’
values) usually defined through a loss

𝓁 : ℱ ×𝒵 → R

such that 𝓁(f , z) increases with how wrong f is on z. For instance

• for classification:
𝓁(f , (x , y)) = 1{f (x )̸=y},

• for regression:
𝓁(f , (x , y)) = (f (x)− y)2,

• for density estimation:
𝓁(q, z) = − log q(z).

The loss may include additional terms related to f itself.
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Notes

ℱ is the set of all the functions that the learn-
ing phase may produce. For instance, when the
architecture of a neural network is fixed, ℱ con-
tains one mapping per parameter configuration.
Note that this space is a continuous space if the
parameter space is.
Learning consists of finding a “good” function,
that is, a function that “does what is it supposed
to do” (classifying, regressing, etc.)
The loss ℓ is a function that indicates how bad a
functional f (e.g. classifier, regressor) is perform-
ing at its task on a sample z : The larger the loss,
the worse the prediction of f on z.
As we will see later, in addition to terms related to
the response of f , the loss function may contain
elements relative to the structure of f , such as
regularization terms, to control the magnitude of
the parameters, the curvature, etc.



We are looking for an f with a small expected risk

R(f ) = EZ (𝓁(f ,Z)) ,

which means that our learning procedure would ideally choose

f ∗ = argmin
f∈ℱ

R(f ).

Although this quantity is unknown, if we have i.i.d. training samples

𝒟 = {Z1, . . . ,ZN} ,

we can compute an estimate, the empirical risk:

R̂(f ;𝒟 ) = Ê𝒟 (𝓁(f ,Z)) =
1

N

N∑
n=1

𝓁(f ,Zn).
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Notes

The expected risk is the expectation of the loss
when the data follows the true distribution of Z ,
and R(f ) is unknown because we do not have
access to the true distribution of Z .



We have

EZ1,...,ZN

(
R̂(f ;𝒟 )

)
= EZ1,...,ZN

(
1

N

N∑
n=1

𝓁(f ,Zn)

)

=
1

N

N∑
n=1

EZn (𝓁(f ,Zn))

= EZ (𝓁(f ,Z))

= R(f ).

The empirical risk is an unbiased estimator of the expected risk.
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Finally, given 𝒟 , ℱ , and 𝓁, “learning” aims at computing

f ∗ = argmin
f∈ℱ

R̂(f ;𝒟 ).

• Can we bound R(f ) with R̂(f ;𝒟 )?

Yes if f is not chosen using 𝒟 . Since the Zn are independent, we just need to take
into account the variance of R̂(f ;𝒟 ).

• Can we bound R(f ∗) with R̂(f ∗;𝒟 )?

! Unfortunately not simply, and not without additional constraints on ℱ .

For instance if |ℱ | = 1, we can!
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Note that in practice, we call “loss” both the functional

𝓁 : ℱ ×𝒵 → R

and the empirical risk minimized during training

ℒ (f ) =
1

N

N∑
n=1

𝓁(f , zn).

François Fleuret Deep learning / 2.1. Loss and risk 12 / 12


	Risk, empirical risk

