
Deep learning

13.3. Transformer Networks

François Fleuret

https://fleuret.org/dlc/

https://fleuret.org/dlc/

Vaswani et al. (2017) proposed to go one step further: instead of using
attention mechanisms as a supplement to standard convolutional and recurrent
operations, they designed a model composed of attention layers only.

They designed this “transformer” for a sequence-to-sequence translation task,
but it is currently key to state-of-the-art approaches across NLP tasks.

François Fleuret Deep learning / 13.3. Transformer Networks 1 / 42

Notes

The standard practice is to train a transformer
in a non-supervised manner on large unlabeled
datasets such as Wikipedia–or re-use a pre-trained
transformer–and then fine tune it in a supervised
manner for tasks which require a ground truth
such as sentiment analysis.

They first introduce a multi-head attention module.

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

√
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1√

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1√

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

∑dk
i=1 qiki, has mean 0 and variance dk.

4

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

√
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1√

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1√

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

∑dk
i=1 qiki, has mean 0 and variance dk.

4

(Vaswani et al., 2017)

Attention(Q,K ,V) = softmax

(
Q K⊤
√
dk

)
V

MultiHead(Q,K ,V) = Concat (H1, . . . ,Hh)W
O

Hi = Attention
(
QWQ

i ,KWK
i ,VW V

i

)
, i = 1, . . . , h

with

WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , W V
i ∈ Rdmodel×dv , WO ∈ Rhdv×dmodel

François Fleuret Deep learning / 13.3. Transformer Networks 2 / 42

Notes

The “scaled dot-product attention” (left) is very
close to the attention module we saw in lecture
13.2. “Attention Mechanisms”, with the addition
of an optional masking (in pink). This may be
useful when such a module is used for a genera-
tive auto-regressive operation and the attention
should be causal, looking only to the past.
The attention is a function of the keys, queries,
and values. The only difference with what was
seen in the previous course is that the attention
matrix is rescaled with the dimension of the em-
bedding, which matters quite a lot.
In the multi-head attention, each head h has its
own processing of the input keys, queries, and
values through respectively W K

i , WQ
i , and W V

i .

And there is one final processing WO applied on
the concatenated results of the multiple heads.

Their complete Transformer model is composed of:

• An encoder that combines N = 6 modules, each composed of a multi-head
attention sub-module, and a [per-token] one hidden-layer MLP, with residual
pass-through and layer normalization.

• A decoder with a similar structure, but with causal attention layers to allow for
regression training, and additional attention layers that attend to the encoder final
keys and values.

Positional information is provided through an additive positional encoding of same
dimension dmodel as the internal representation, and is of the form

PEt,2i = sin

 t

10,000
2i

dmodel

PEt,2i+1 = cos

 t

10,000
2i+1

dmodel

 .

François Fleuret Deep learning / 13.3. Transformer Networks 3 / 42

Notes

Contrary to what we previously saw with the
concatenated binary positional encoding, here
the position is provided as additive encoding,
where t is the position in the sequence, and 2i
and 2i + 1 the dimension.

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

“Original” Transformer (Vaswani et al., 2017).

François Fleuret Deep learning / 13.3. Transformer Networks 4 / 42

Notes

This is a depiction of the standard transformer
architecture for sequence-to-sequence translation.
It consists of an encoder (left part) and a decoder
(right part). Both are a stack of N = 6 modules.
Each token (subword) of the input sequence is
encoded with a look-up table to get its embed-
ding of dimension d , so that the input is a tensor
of size T × d . Then the positional encoding of
same size is added to it.
Each of the N modules of the encoder is com-
posed of a multi-head self-attention operation
followed by a “feed forward” operation that ap-
plies a one hidden layer perceptron at every po-
sition of the sequence separately. This can be

implemented with 1 × 1 convolutions. Both the
self-attention and the feed-forward are combined
with residual pass-through.
The decoder is an auto-regressive model, and
each of its module has a multi-head self-attention
operation, then an attention that attends to the
encoder, and a feed-forward operation. The self-
attention is masked to make it causal, i.e. it
takes into account only the part of the sequence
already generated. The attention to the encoder
is not masked but its keys and values are func-
tions of the outputs of the corresponding module
in the encoding stack.

The architecture is tested on English-to-German and English-to-French translation using
the standard WMT2014 datasets.

• English-to-German: 4.5M sentence pairs, 37k tokens vocabulary.

• English-to-French: 36M sentence pairs, 32k tokens vocabulary.

• 8 P100 GPUs (150 TFlops FP16), 0.5 day for the small model, 3.5 days for the
large one.

François Fleuret Deep learning / 13.3. Transformer Networks 5 / 42

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model
BLEU Training Cost (FLOPs)

EN-DE EN-FR EN-DE EN-FR
ByteNet [18] 23.75
Deep-Att + PosUnk [39] 39.2 1.0 · 1020

GNMT + RL [38] 24.6 39.92 2.3 · 1019 1.4 · 1020

ConvS2S [9] 25.16 40.46 9.6 · 1018 1.5 · 1020

MoE [32] 26.03 40.56 2.0 · 1019 1.2 · 1020

Deep-Att + PosUnk Ensemble [39] 40.4 8.0 · 1020

GNMT + RL Ensemble [38] 26.30 41.16 1.8 · 1020 1.1 · 1021

ConvS2S Ensemble [9] 26.36 41.29 7.7 · 1019 1.2 · 1021

Transformer (base model) 27.3 38.1 3.3 · 1018

Transformer (big) 28.4 41.8 2.3 · 1019

Label Smoothing During training, we employed label smoothing of value εls = 0.1 [36]. This
hurts perplexity, as the model learns to be more unsure, but improves accuracy and BLEU score.

6 Results

6.1 Machine Translation

On the WMT 2014 English-to-German translation task, the big transformer model (Transformer (big)
in Table 2) outperforms the best previously reported models (including ensembles) by more than 2.0
BLEU, establishing a new state-of-the-art BLEU score of 28.4. The configuration of this model is
listed in the bottom line of Table 3. Training took 3.5 days on 8 P100 GPUs. Even our base model
surpasses all previously published models and ensembles, at a fraction of the training cost of any of
the competitive models.

On the WMT 2014 English-to-French translation task, our big model achieves a BLEU score of 41.0,
outperforming all of the previously published single models, at less than 1/4 the training cost of the
previous state-of-the-art model. The Transformer (big) model trained for English-to-French used
dropout rate Pdrop = 0.1, instead of 0.3.

For the base models, we used a single model obtained by averaging the last 5 checkpoints, which
were written at 10-minute intervals. For the big models, we averaged the last 20 checkpoints. We
used beam search with a beam size of 4 and length penalty α = 0.6 [38]. These hyperparameters
were chosen after experimentation on the development set. We set the maximum output length during
inference to input length + 50, but terminate early when possible [38].

Table 2 summarizes our results and compares our translation quality and training costs to other model
architectures from the literature. We estimate the number of floating point operations used to train a
model by multiplying the training time, the number of GPUs used, and an estimate of the sustained
single-precision floating-point capacity of each GPU 5.

6.2 Model Variations

To evaluate the importance of different components of the Transformer, we varied our base model
in different ways, measuring the change in performance on English-to-German translation on the
development set, newstest2013. We used beam search as described in the previous section, but no
checkpoint averaging. We present these results in Table 3.

In Table 3 rows (A), we vary the number of attention heads and the attention key and value dimensions,
keeping the amount of computation constant, as described in Section 3.2.2. While single-head
attention is 0.9 BLEU worse than the best setting, quality also drops off with too many heads.

5We used values of 2.8, 3.7, 6.0 and 9.5 TFLOPS for K80, K40, M40 and P100, respectively.

8

(Vaswani et al., 2017)

François Fleuret Deep learning / 13.3. Transformer Networks 6 / 42

Notes

The standard metric in natural language process-
ing is the Bilingual Evaluation Understudy Score
(BLEU) score which aims at evaluating a gener-
ated sequence to a reference sentence. The BLEU
score ranges between 0 (perfect mismatch) and
1 (perfect match).

Input-Input Layer5

The
Law
will
never
be
perfect
,
but
its
application
should
be
just
-
this
is
what
we
are
missing
,
in
my
opinion
.
<EOS>
<pad>

The
Law
will

never
be

perfect
,

but
its

application
should

be
just

-
this

is
what

we
are

missing
,

in
my

opinion
.

<EOS>
<pad>

Input-Input Layer5

The
Law
will
never
be
perfect
,
but
its
application
should
be
just
-
this
is
what
we
are
missing
,
in
my
opinion
.
<EOS>
<pad>

The
Law
will

never
be

perfect
,

but
its

application
should

be
just

-
this

is
what

we
are

missing
,

in
my

opinion
.

<EOS>
<pad>

Figure
4:Tw

o
attention

heads,also
in

layer5
of6,apparently

involved
in

anaphora
resolution.Top:

Fullattentions
forhead

5.B
ottom

:Isolated
attentions

from
justthe

w
ord

‘its’forattention
heads

5
and

6.N
ote

thatthe
attentions

are
very

sharp
forthis

w
ord.

14

Input-Input Layer5

The
Law
will
never
be
perfect
,
but
its
application
should
be
just
-
this
is
what
we
are
missing
,
in
my
opinion
.
<EOS>
<pad>

The
Law
will

never
be

perfect
,

but
its

application
should

be
just

-
this

is
what

we
are

missing
,

in
my

opinion
.

<EOS>
<pad>

Input-Input Layer5
The
Law
will
never
be
perfect
,
but
its
application
should
be
just
-
this
is
what
we
are
missing
,
in
my
opinion
.
<EOS>
<pad>

The
Law
will

never
be

perfect
,

but
its

application
should

be
just

-
this

is
what

we
are

missing
,

in
my

opinion
.

<EOS>
<pad>

Figure
4:Tw

o
attention

heads,also
in

layer5
of6,apparently

involved
in

anaphora
resolution.Top:

Fullattentions
forhead

5.B
ottom

:Isolated
attentions

from
justthe

w
ord

‘its’forattention
heads

5
and

6.N
ote

thatthe
attentions

are
very

sharp
forthis

w
ord.

14
(Vaswani et al., 2017)

François Fleuret Deep learning / 13.3. Transformer Networks 7 / 42

Notes

On the left is a visualization of the attention
as computed by one head of the layer 5 of the
encoder
On the right the attention given by the word
“its” for two different heads is on “law” and “ap-
plication” which provides help for gender and
grammatical issues.

Input-Input Layer5

The
Law
will
never
be
perfect
,
but
its
application
should
be
just
-
this
is
what
we
are
missing
,
in
my
opinion
.
<EOS>
<pad>

The
Law
will

never
be

perfect
,

but
its

application
should

be
just

-
this

is
what

we
are

missing
,

in
my

opinion
.

<EOS>
<pad>

Input-Input Layer5

The
Law
will
never
be
perfect
,
but
its
application
should
be
just
-
this
is
what
we
are
missing
,
in
my
opinion
.
<EOS>
<pad>

The
Law
will

never
be

perfect
,

but
its

application
should

be
just

-
this

is
what

we
are

missing
,

in
my

opinion
.

<EOS>
<pad>

Figure
5:

M
any

of
the

attention
heads

exhibitbehaviour
thatseem

s
related

to
the

structure
of

the
sentence.W

e
give

tw
o

such
exam

ples
above,from

tw
o

differentheads
from

the
encoderself-attention

atlayer5
of6.T

he
heads

clearly
learned

to
perform

differenttasks.

15

(Vaswani et al., 2017)

François Fleuret Deep learning / 13.3. Transformer Networks 8 / 42

Notes

Two other heads also in layer 5.

Standard transformers now combine differently the residual connection and the
normalization (Wang et al., 2019).

xl F
⊕

LN xl+1
yl

(a) post-norm residual unit

xl LN F
⊕

xl+1
yl

(b) pre-norm residual unit

Figure 1: Examples of pre-norm residual unit and post-
norm residual unit. F = sub-layer, and LN = layer nor-
malization.

former.

• Inspired by the linear multi-step method
in numerical analysis (Ascher and Petzold,
1998), we propose an approach based on dy-
namic linear combination of layers (DLCL)
to memorizing the features extracted from all
preceding layers. This overcomes the prob-
lem with the standard residual network where
a residual connection just relies on the output
of one-layer ahead and may forget the earlier
layers.

• We successfully train a 30-layer encoder, far
surpassing the deepest encoder reported so
far (Bapna et al., 2018). To our best knowl-
edge, this is the deepest encoder used in
NMT.

On WMT’16 English-German, NIST
OpenMT’12 Chinese-English, and larger
WMT’18 Chinese-English translation tasks,
we show that our deep system (30/25-layer
encoder) yields a BLEU improvement of 1.3∼2.4
points over the base model (Transformer-Base
with 6 layers). It even outperforms Transformer-
Big by 0.4∼0.6 BLEU points, but requires 1.6X
fewer model parameters and 3X less training time.
More interestingly, our deep model is 10% faster
than Transformer-Big in inference speed.

2 Post-Norm and Pre-Norm Transformer

The Transformer system and its variants follow the
standard encoder-decoder paradigm. On the en-
coder side, there are a number of identical stacked
layers. Each of them is composed of a self-
attention sub-layer and a feed-forward sub-layer.
The attention model used in Transformer is multi-
head attention, and its output is fed into a fully
connected feed-forward network. Likewise, the

decoder has another stack of identical layers. It
has an encoder-decoder attention sub-layer in ad-
dition to the two sub-layers used in each encoder
layer. In general, because the encoder and the de-
coder share a similar architecture, we can use the
same method to improve them. In the section, we
discuss a more general case, not limited to the en-
coder or the decoder.

2.1 Model Layout
For Transformer, it is not easy to train stacked lay-
ers on neither the encoder-side nor the decoder-
side. Stacking all these sub-layers prevents the ef-
ficient information flow through the network, and
probably leads to the failure of training. Residual
connections and layer normalization are adopted
for a solution. Let F be a sub-layer in encoder or
decoder, and θl be the parameters of the sub-layer.
A residual unit is defined to be (He et al., 2016b):

xl+1 = f(yl) (1)

yl = xl + F(xl; θl) (2)

where xl and xl+1 are the input and output of the
l-th sub-layer, and yl is the intermediate output fol-
lowed by the post-processing function f(·). In this
way, xl is explicitly exposed to yl (see Eq. (2)).

Moreover, layer normalization is adopted to re-
duce the variance of sub-layer output because hid-
den state dynamics occasionally causes a much
longer training time for convergence. There are
two ways to incorporate layer normalization into
the residual network.

• Post-Norm. In early versions of Transformer
(Vaswani et al., 2017), layer normalization is
placed after the element-wise residual addi-
tion (see Figure 1(a)), like this:

xl+1 = LN(xl + F(xl; θl)) (3)

where LN(·) is the layer normalization func-
tion, whose parameter is dropped for simplic-
ity. It can be seen as a post-processing step of
the output (i.e., f(x) = LN(x)).

• Pre-Norm. In recent implementations (Klein
et al., 2017; Vaswani et al., 2018; Domhan,
2018), layer normalization is applied to the
input of every sub-layer (see Figure 1(b)):

xl+1 = xl + F(LN(xl); θl) (4)

(Wang et al., 2019)

François Fleuret Deep learning / 13.3. Transformer Networks 9 / 42

Transformer self-training and fine-tuning for NLP

François Fleuret Deep learning / 13.3. Transformer Networks 10 / 42

The transformer networks were introduced for translation, and trained with a supervised
procedure, from pairs of sentences.

However, as for word embeddings, they can be trained in an unsupervised manner, for
auto-regression or as denoising auto-encoders, from very large data-sets, and fine-tuned
on supervised tasks with small data-sets.

François Fleuret Deep learning / 13.3. Transformer Networks 11 / 42

Notes

A transformer [pre-]trained in a unsupervised man-
ner for the task of predicting a token: for auto-
regression, the input is the sentence up to the
token to predict, for mask language modeling,
the input is a full sentence with some tokens
replaced by a “mask” token. No ground truth is
required for those tasks.
As for word embedding, training a transformer
model like this allows to capture statistical struc-
tures in the text and provide an extremely good
representation for more sophisticated tasks which
can only be trained in a supervised manner with
only small datasets available.

BERT (Bidirectional Encoder Representation from Transformers, Devlin et al., 2018) is
an encoder of a transformer pre-trained with:

• Masked Language Model (MLM), that consists in predicting [15% of] words which
have been replaced with a “MASK” token.

• Next Sentence Prediction (NSP), which consists in predicting if a certain sentence
follows the current one.

It is then fine-tuned on multiple NLP tasks.

François Fleuret Deep learning / 13.3. Transformer Networks 12 / 42

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

BERT (Devlin et al., 2018)

François Fleuret Deep learning / 13.3. Transformer Networks 13 / 42

BERT BERT

E[CLS] E1 E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS] Tok 1 [SEP]... Tok N Tok 1 ... TokM

Question Paragraph

Start/End Span

BERT

E[CLS] E1 E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS] Tok 1 [SEP]... Tok N Tok 1 ... TokM

Masked Sentence A Masked Sentence B

Pre-training Fine-Tuning

NSP Mask LM Mask LM

Unlabeled Sentence A and B Pair

SQuAD

Question Answer Pair

NERMNLI

Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architec-
tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize
models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special
symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating ques-
tions/answers).

ing and auto-encoder objectives have been used
for pre-training such models (Howard and Ruder,
2018; Radford et al., 2018; Dai and Le, 2015).

2.3 Transfer Learning from Supervised Data

There has also been work showing effective trans-
fer from supervised tasks with large datasets, such
as natural language inference (Conneau et al.,
2017) and machine translation (McCann et al.,
2017). Computer vision research has also demon-
strated the importance of transfer learning from
large pre-trained models, where an effective recipe
is to fine-tune models pre-trained with Ima-
geNet (Deng et al., 2009; Yosinski et al., 2014).

3 BERT

We introduce BERT and its detailed implementa-
tion in this section. There are two steps in our
framework: pre-training and fine-tuning. Dur-
ing pre-training, the model is trained on unlabeled
data over different pre-training tasks. For fine-
tuning, the BERT model is first initialized with
the pre-trained parameters, and all of the param-
eters are fine-tuned using labeled data from the
downstream tasks. Each downstream task has sep-
arate fine-tuned models, even though they are ini-
tialized with the same pre-trained parameters. The
question-answering example in Figure 1 will serve
as a running example for this section.

A distinctive feature of BERT is its unified ar-
chitecture across different tasks. There is mini-

mal difference between the pre-trained architec-
ture and the final downstream architecture.

Model Architecture BERT’s model architec-
ture is a multi-layer bidirectional Transformer en-
coder based on the original implementation de-
scribed in Vaswani et al. (2017) and released in
the tensor2tensor library.1 Because the use
of Transformers has become common and our im-
plementation is almost identical to the original,
we will omit an exhaustive background descrip-
tion of the model architecture and refer readers to
Vaswani et al. (2017) as well as excellent guides
such as “The Annotated Transformer.”2

In this work, we denote the number of layers
(i.e., Transformer blocks) as L, the hidden size as
H , and the number of self-attention heads as A.3

We primarily report results on two model sizes:
BERTBASE (L=12, H=768, A=12, Total Param-
eters=110M) and BERTLARGE (L=24, H=1024,
A=16, Total Parameters=340M).

BERTBASE was chosen to have the same model
size as OpenAI GPT for comparison purposes.
Critically, however, the BERT Transformer uses
bidirectional self-attention, while the GPT Trans-
former uses constrained self-attention where every
token can only attend to context to its left.4

1https://github.com/tensorflow/tensor2tensor
2http://nlp.seas.harvard.edu/2018/04/03/attention.html
3In all cases we set the feed-forward/filter size to be 4H ,

i.e., 3072 for the H = 768 and 4096 for the H = 1024.
4We note that in the literature the bidirectional Trans-

(Devlin et al., 2018)

François Fleuret Deep learning / 13.3. Transformer Networks 14 / 42

Notes

BERT is trained in an unsupervised manner to
do two tasks at the same time: predicting miss-
ing words and predicting whether two sentences
follow each other in the corpus.

BERT

E[CLS] E1 E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS]
Tok

1 [SEP]... Tok
N

Tok
1 ... Tok

M

Question Paragraph

BERT

E[CLS] E1 E2
 EN

C T1 T2
 TN

Single Sentence

...

...

BERT

Tok 1 Tok 2 Tok N...[CLS]

E[CLS] E1 E2
 EN

C T1 T2
 TN

Single Sentence

B-PERO O

...

...E[CLS] E1 E[SEP]

Class
Label

... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

Start/End Span

Class
Label

BERT

Tok 1 Tok 2 Tok N...[CLS] Tok 1[CLS][CLS]
Tok

1 [SEP]... Tok
N

Tok
1 ... Tok

M

Sentence 1

...

Sentence 2

Figure 4: Illustrations of Fine-tuning BERT on Different Tasks.

SST-2 The Stanford Sentiment Treebank is a
binary single-sentence classification task consist-
ing of sentences extracted from movie reviews
with human annotations of their sentiment (Socher
et al., 2013).

CoLA The Corpus of Linguistic Acceptability is
a binary single-sentence classification task, where
the goal is to predict whether an English sentence
is linguistically “acceptable” or not (Warstadt
et al., 2018).

STS-B The Semantic Textual Similarity Bench-
mark is a collection of sentence pairs drawn from
news headlines and other sources (Cer et al.,
2017). They were annotated with a score from 1
to 5 denoting how similar the two sentences are in
terms of semantic meaning.

MRPC Microsoft Research Paraphrase Corpus
consists of sentence pairs automatically extracted
from online news sources, with human annotations

for whether the sentences in the pair are semanti-
cally equivalent (Dolan and Brockett, 2005).

RTE Recognizing Textual Entailment is a bi-
nary entailment task similar to MNLI, but with
much less training data (Bentivogli et al., 2009).14

WNLI Winograd NLI is a small natural lan-
guage inference dataset (Levesque et al., 2011).
The GLUE webpage notes that there are issues
with the construction of this dataset, 15 and every
trained system that’s been submitted to GLUE has
performed worse than the 65.1 baseline accuracy
of predicting the majority class. We therefore ex-
clude this set to be fair to OpenAI GPT. For our
GLUE submission, we always predicted the ma-

14Note that we only report single-task fine-tuning results
in this paper. A multitask fine-tuning approach could poten-
tially push the performance even further. For example, we
did observe substantial improvements on RTE from multi-
task training with MNLI.

15https://gluebenchmark.com/faq

(Devlin et al., 2018)
François Fleuret Deep learning / 13.3. Transformer Networks 15 / 42

Head 9-6

- Prepositions attend to their objects

- 76.3% accuracy at the pobj relation

Head 8-11

- Noun modifiers (e.g., determiners) attend
 to their noun

- 94.3% accuracy at the det relation

Head 8-10

- Direct objects attend to their verbs

- 86.8% accuracy at the dobj relation

Head 7-6

- Possessive pronouns and apostrophes
 attend to the head of the corresponding NP

- 80.5% accuracy at the poss relation

Head 4-10

- Passive auxiliary verbs attend to the
 verb they modify

- 82.5% accuracy at the auxpass relation

Head 5-4

- Coreferent mentions attend to their antecedents

- 65.1% accuracy at linking the head of a
 coreferent mention to the head of an antecedent

Figure 5: BERT attention heads that correspond to linguistic phenomena. In the example attention maps, the
darkness of a line indicates the strength of the attention weight. All attention to/from red words is colored red;
these colors are there to highlight certain parts of the attention heads’ behaviors. For Head 9-6, we don’t show
attention to [SEP] for clarity. Despite not being explicitly trained on these tasks, BERT’s attention heads perform
remarkably well, illustrating how syntax-sensitive behavior can emerge from self-supervised training alone.

(Clark et al., 2019)

François Fleuret Deep learning / 13.3. Transformer Networks 16 / 42

Notes

Once again, visualizing the attention matrices
show that it connects a word with other words
that help to get its meaning.

Large Language Models

François Fleuret Deep learning / 13.3. Transformer Networks 18 / 42

GPT (Generative Pre-Training, Radford, 2018) is a decoder of a transformer trained for
auto-regressive text generation.

Figure 1: (left) Transformer architecture and training objectives used in this work. (right) Input
transformations for fine-tuning on different tasks. We convert all structured inputs into token
sequences to be processed by our pre-trained model, followed by a linear+softmax layer.

3.3 Task-specific input transformations

For some tasks, like text classification, we can directly fine-tune our model as described above.
Certain other tasks, like question answering or textual entailment, have structured inputs such as
ordered sentence pairs, or triplets of document, question, and answers. Since our pre-trained model
was trained on contiguous sequences of text, we require some modifications to apply it to these tasks.
Previous work proposed learning task specific architectures on top of transferred representations [44].
Such an approach re-introduces a significant amount of task-specific customization and does not
use transfer learning for these additional architectural components. Instead, we use a traversal-style
approach [52], where we convert structured inputs into an ordered sequence that our pre-trained
model can process. These input transformations allow us to avoid making extensive changes to the
architecture across tasks. We provide a brief description of these input transformations below and
Figure 1 provides a visual illustration. All transformations include adding randomly initialized start
and end tokens (〈s〉, 〈e〉).

Textual entailment For entailment tasks, we concatenate the premise p and hypothesis h token
sequences, with a delimiter token ($) in between.

Similarity For similarity tasks, there is no inherent ordering of the two sentences being compared.
To reflect this, we modify the input sequence to contain both possible sentence orderings (with a
delimiter in between) and process each independently to produce two sequence representations hml
which are added element-wise before being fed into the linear output layer.

Question Answering and Commonsense Reasoning For these tasks, we are given a context
document z, a question q, and a set of possible answers {ak}. We concatenate the document context
and question with each possible answer, adding a delimiter token in between to get [z; q; $; ak]. Each
of these sequences are processed independently with our model and then normalized via a softmax
layer to produce an output distribution over possible answers.

4 Experiments

4.1 Setup

Unsupervised pre-training We use the BooksCorpus dataset [71] for training the language model.
It contains over 7,000 unique unpublished books from a variety of genres including Adventure,
Fantasy, and Romance. Crucially, it contains long stretches of contiguous text, which allows the
generative model to learn to condition on long-range information. An alternative dataset, the 1B
Word Benchmark, which is used by a similar approach, ELMo [44], is approximately the same size

4

(Radford, 2018)

François Fleuret Deep learning / 13.3. Transformer Networks 19 / 42

Notes

Note that GPT model is inherently causal, so
only carries information forward, and consists
of 12 modules as opposed to 6 for the original
transformer.
The tasks GPT can be fine-tuned on are:

• Classification: for instance for sentiment
analysis, when the input is a comment,
and the task is to predict whether it is
positive or negative.

• Entailment: given a premise and a
hypothesis, the task is to predict whether
the hypothesis is implied by the premise.

• Similarity: the task is to predict if two
pieces of text have the same meaning.

• Multiple choice: the task is to predict the
correct answer.

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

GPT (Radford, 2018)

François Fleuret Deep learning / 13.3. Transformer Networks 20 / 42

“GPT-2 is a large transformer-based language model with 1.5 billion parame-
ters, trained on a dataset of 8 million web pages. GPT-2 is trained with a
simple objective: predict the next word, given all of the previous words within
some text. The diversity of the dataset causes this simple goal to contain
naturally occurring demonstrations of many tasks across diverse domains.
GPT-2 is a direct scale-up of GPT, with more than 10X the parameters and
trained on more than 10X the amount of data.”

(Radford et al., 2019)

François Fleuret Deep learning / 13.3. Transformer Networks 21 / 42

We can use HuggingFace’s pre-trained models (https://huggingface.co/).

import torch

from transformers import GPT2Tokenizer, GPT2LMHeadModel

tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2')
model.eval()

tokens = tokenizer.encode('Studying Deep-Learning is')

for k in range(100): # no more than 100 tokens
outputs = model(torch.tensor([tokens])).logits
next_token = torch.argmax(outputs[0, -1])
tokens.append(next_token)
if tokenizer.decode([next_token]) == '.': break

print(tokenizer.decode(tokens))

prints

Studying Deep-Learning is a great way to learn about the world around you.

François Fleuret Deep learning / 13.3. Transformer Networks 22 / 42

Notes

HugginFace is a company that develops and dis-
tributes open-source implementations of language
models. The transformers can be installed using
the pip Python packets management system withpip install transformersThe piece of code in the slide loads a GPT-2
model and generates the end of a sentence given
“Studying Deep-Learning is” as beginning.
tokenizer can take as input a sequence of strings
to produce a sequence of token, or the opposite,
take as input a sequence of tokens and produces
the corresponding sequence of words.
In this example, the generative procedure picks
at each iteration the word with the maximum
probability, but stochastic sampling could also be
used.
The generated sentence could make sense in other
situations (e.g. replacing “Deep-Learning” with
another topic of studies), but is grammatically
correct and consistent with “studying”.

https://huggingface.co/

Large GPT have been shown to exhibit some “few shot learning” capabilities when they
are properly “primed” (Brown et al., 2020).

For instance using Hugging Face’s gpt2 model with 120M parameters, we can get these
sentence completions, where the generated parts are in bold:

I: I love apples, O: positive, I: music is my passion, O: positive, I: my job is
boring, O: negative, I: frozen pizzas are awesome, O: positive,

I: I love apples, O: positive, I: music is my passion, O: positive, I: my job is
boring, O: negative, I: frozen pizzas taste like cardboard, O: negative,

I: water boils at 100 degrees, O: physics, I: the square root of two is irrational,
O: mathematics, I: the set of prime numbers is infinite, O: mathematics, I:
gravity is proportional to the mass, O: physics,

I: water boils at 100 degrees, O: physics, I: the square root of two is irrational,
O: mathematics, I: the set of prime numbers is infinite, O: mathematics, I:
squares are rectangles, O: mathematics,

François Fleuret Deep learning / 13.3. Transformer Networks 23 / 42

Figure 3.1: Smooth scaling of performance with compute. Performance (measured in terms of cross-entropy
validation loss) follows a power-law trend with the amount of compute used for training. The power-law behavior
observed in [KMH+20] continues for an additional two orders of magnitude with only small deviations from the
predicted curve. For this figure, we exclude embedding parameters from compute and parameter counts.

Setting PTB

SOTA (Zero-Shot) 35.8a

GPT-3 Zero-Shot 20.5

Table 3.1: Zero-shot results on PTB language modeling dataset. Many other common language modeling datasets
are omitted because they are derived from Wikipedia or other sources which are included in GPT-3’s training data.
a[RWC+19]

3.1 Language Modeling, Cloze, and Completion Tasks

In this section we test GPT-3’s performance on the traditional task of language modeling, as well as related tasks
that involve predicting a single word of interest, completing a sentence or paragraph, or choosing between possible
completions of a piece of text.

3.1.1 Language Modeling

We calculate zero-shot perplexity on the Penn Tree Bank (PTB) [MKM+94] dataset measured in [RWC+19]. We omit
the 4 Wikipedia-related tasks in that work because they are entirely contained in our training data, and we also omit the
one-billion word benchmark due to a high fraction of the dataset being contained in our training set. PTB escapes these
issues due to predating the modern internet. Our largest model sets a new SOTA on PTB by a substantial margin of 15
points, achieving a perplexity of 20.50. Note that since PTB is a traditional language modeling dataset it does not have
a clear separation of examples to define one-shot or few-shot evaluation around, so we measure only zero-shot.

3.1.2 LAMBADA

The LAMBADA dataset [PKL+16] tests the modeling of long-range dependencies in text – the model is asked to
predict the last word of sentences which require reading a paragraph of context. It has recently been suggested that the
continued scaling of language models is yielding diminishing returns on this difficult benchmark. [BHT+20] reflect on
the small 1.5% improvement achieved by a doubling of model size between two recent state of the art results ([SPP+19]

11

(Brown et al., 2020)

The GPT-3 model has 175B parameters and is trained on 300B tokens from various
sources (Brown et al., 2020). The Pathways Language Model (PaLM) has 540B
parameters and is trained on 780B tokens (Chowdhery et al., 2022).

François Fleuret Deep learning / 13.3. Transformer Networks 24 / 42

Context → Q: What is 98 plus 45?
A:

Completion → 143

Figure G.44: Evaluation example for Arithmetic 2D+

Context → Q: What is 95 times 45?
A:

Completion → 4275

Figure G.45: Evaluation example for Arithmetic 2Dx

Context → Q: What is 509 minus 488?
A:

Completion → 21

Figure G.46: Evaluation example for Arithmetic 3D-

Context → Q: What is 556 plus 497?
A:

Completion → 1053

Figure G.47: Evaluation example for Arithmetic 3D+

Context → Q: What is 6209 minus 3365?
A:

Completion → 2844

Figure G.48: Evaluation example for Arithmetic 4D-

Context → Q: What is 9923 plus 617?
A:

Completion → 10540

Figure G.49: Evaluation example for Arithmetic 4D+

Context → Q: What is 40649 minus 78746?
A:

Completion → -38097

Figure G.50: Evaluation example for Arithmetic 5D−

Context → Q: What is 65360 plus 16204?
A:

Completion → 81564

Figure G.51: Evaluation example for Arithmetic 5D+

60

Figure 3.10: Results on all 10 arithmetic tasks in the few-shot settings for models of different sizes. There is a
significant jump from the second largest model (GPT-3 13B) to the largest model (GPT-3 175), with the latter being
able to reliably accurate 2 digit arithmetic, usually accurate 3 digit arithmetic, and correct answers a significant fraction
of the time on 4-5 digit arithmetic, 2 digit multiplication, and compound operations. Results for one-shot and zero-shot
are shown in the appendix.

Setting 2D+ 2D- 3D+ 3D- 4D+ 4D- 5D+ 5D- 2Dx 1DC

GPT-3 Zero-shot 76.9 58.0 34.2 48.3 4.0 7.5 0.7 0.8 19.8 9.8
GPT-3 One-shot 99.6 86.4 65.5 78.7 14.0 14.0 3.5 3.8 27.4 14.3
GPT-3 Few-shot 100.0 98.9 80.4 94.2 25.5 26.8 9.3 9.9 29.2 21.3

Table 3.9: Results on basic arithmetic tasks for GPT-3 175B. {2,3,4,5}D{+,-} is 2, 3, 4, and 5 digit addition or
subtraction, 2Dx is 2 digit multiplication. 1DC is 1 digit composite operations. Results become progressively stronger
moving from the zero-shot to one-shot to few-shot setting, but even the zero-shot shows significant arithmetic abilities.

First we evaluate GPT-3 in the few-shot setting, for which results are shown in Figure 3.10. On addition and subtraction,
GPT-3 displays strong proficiency when the number of digits is small, achieving 100% accuracy on 2 digit addition,
98.9% at 2 digit subtraction, 80.2% at 3 digit addition, and 94.2% at 3-digit subtraction. Performance decreases as the
number of digits increases, but GPT-3 still achieves 25-26% accuracy on four digit operations and 9-10% accuracy on
five digit operations, suggesting at least some capacity to generalize to larger numbers of digits. GPT-3 also achieves
29.2% accuracy at 2 digit multiplication, an especially computationally intensive operation. Finally, GPT-3 achieves
21.3% accuracy at single digit combined operations (for example, 9*(7+5)), suggesting that it has some robustness
beyond just single operations.

As Figure 3.10 makes clear, small models do poorly on all of these tasks – even the 13 billion parameter model (the
second largest after the 175 billion full GPT-3) can solve 2 digit addition and subtraction only half the time, and all
other operations less than 10% of the time.

One-shot and zero-shot performance are somewhat degraded relative to few-shot performance, suggesting that adaptation
to the task (or at the very least recognition of the task) is important to performing these computations correctly.
Nevertheless, one-shot performance is still quite strong, and even zero-shot performance of the full GPT-3 significantly
outperforms few-shot learning for all smaller models. All three settings for the full GPT-3 are shown in Table 3.9, and
model capacity scaling for all three settings is shown in Appendix H.

To spot-check whether the model is simply memorizing specific arithmetic problems, we took the 3-digit arithmetic
problems in our test set and searched for them in our training data in both the forms "<NUM1> + <NUM2> =" and

22

(Brown et al., 2020)

François Fleuret Deep learning / 13.3. Transformer Networks 25 / 42

OpenAI/Github’s Copilot

François Fleuret Deep learning / 13.3. Transformer Networks 26 / 42

Input: I was supposed to start writing the paper at 5:00 PM. But then I
started playing with this cool new language model for 10 minutes. 10

minutes later, it's suddenly 9:30 PM!

Model Output: This joke is about how time flies when you're having fun.
The person was supposed to start writing a paper at 5:00 PM, but they

started playing with a language model instead. They thought they were

only playing with it for 10 minutes, but it was actually 4.5 hours.

I will explain these jokes:
(1) The problem with kleptomaniacs is that they always take things literally.
Explanation: This joke is wordplay. Someone who "takes things literally" is someone who doesn't fully understand social cues and context, which is a negative trait.
But the definition of kleptomania is someone who literally takes things.
(2) Always borrow money from a pessimist. They’ll never expect it back.
Explanation: Most people expect you to pay them back when you borrow money, however a pessimist is someone who always assumes the worst, so if you borrow money from
them, they will expect that you won't pay them back anyways.

Input: I was going to fly to visit my family on April 6th. My mom said
"Oh great, your step dad's poetry reading is that night!" So now I'm

flying in on April 7th.

Model Output: The joke is that the speaker's mother is trying to get
them to go to their step dad's poetry reading, but the speaker doesn't

want to go, so they are changing their flight to the day after the

poetry reading.

Input: I think I understand why me and my partner are such a good match.
I get excited when I smell food and become super alert when the

doorbell rings. My girlfriend Shelley becomes ecstatic when she sees a

person who she just saw 5 hours ago.

Model Output: This joke is about dogs. Dogs get excited when they smell
food and when the doorbell rings. The girlfriend is excited to see

someone she just saw 5 hours ago, which is a trait of dogs.

Input: Reading "War and Peace" doesn't scare me. I once had to review the
CL for my intern's whole project on his final day!

Model Output: 'War and Peace' is a very long book, so reading it is a
daunting task. However, the speaker is saying they had to review the

code for their intern's project on their final day, which is even more

daunting.

Input: I tried 10,000 random restarts of my neural network, but I was
accused of overfitting. I guess no good seed goes unpunished.

Model Output: This joke is a pun. A neural network is a computer
program that can learn from data. A "seed" is a number that is used to

initialize a random number generator. A "good seed" is a number that

produces a good random number generator. The phrase "no good deed goes

unpunished" means that if you do something good, you will be punished

for it.

Input: What's the difference between a zebra and an umbrella? One is a
striped animal related to horses, another is a device you use to stop

the rain from falling on you.

Model Output: This joke is an anti-joke. The joke is that the answer
is obvious, and the joke is that you were expecting a funny answer.

Explaining a Joke

Input: When I found out my grandma was in the hospital I felt a
particular color. When someone cut me off in traffic I felt a

different color. What is the most likely color I would see if I

combined these two colors?

Model Output: The color that I felt when I found out my grandma was in
the hospital was likely a sad color, like blue. The color that I felt

when someone cut me off in traffic was likely an angry color, like

red. If I combined these two colors, I would likely see purple. The

answer is "purple".

I will explain how to make logical inferences:
(1) John wakes to the sound of his children giggling outside the door. They bust in and say "Happy Father's Day!" with a plate full of food. 2022 has been a great
year. Can we infer that John was born before the inauguration of Barack Obama?
Answer: We can infer that John is a father because of "his children". We can infer that the current year is 2022. Barack Obama was inaugurated in 2009, so it has been
about 13 years since Obama was inaugurated. John's children are old enough to speak, so if John were born after Obama's inauguration, he would have been younger than
10 when he had children. So, we can infer that John was born before Obama's inauguration. The answer is "yes".
(2) Sam sees a piano in the subway stations. Laughing, his friends prod him to play, saying "Remember how amazing your rendition of Chopsticks was at the Christmas
party?" Can we infer that John majored in piano at Juilliard?
Answer: Juilliard is a top school for music, so someone who majored in piano at Juilliard would be an expert pianist. "Chopsticks" is a very simple song to play on
the piano. His friends were therefore likely being sarcastic when they told him to play, which would imply that Sam was not an expert piano player. So it is unlikely
that Sam majored in piano at Juilliard. The answer is "no".

Input: Guido was writing a Python program. He keeps getting confused by
variable scope and looking it up on StackOverflow. Is it possible that

the Guido in the prompt refers to Guido van Rossum?

Model Output: Guido van Rossum is the creator of Python. He would not
need to look up variable scope on StackOverflow. The answer is "no".

Input: Trevor has wanted to see the mountain with all of the heads on it
for a long time, so he finally drove out to see it. What is the capital

of the state that is directly east of the state that Trevor is currently

in?

Model Output: The mountain with all of the heads on it is Mount
Rushmore. Mount Rushmore is in South Dakota. The state directly east of

South Dakota is Minnesota. The capital of Minnesota is St. Paul. The

answer is "St. Paul".

Input: Michael is at that really famous museum in France looking at
its most famous painting. However, the artist who made this painting

just makes Michael think of his favorite cartoon character from his

childhood. What was the country of origin of the thing that the

cartoon character usually holds in his hand?

Model Output: The most famous painting in the Louvre is the Mona
Lisa. The artist who made the Mona Lisa is Leonardo da Vinci. Leonardo

da Vinci is also the name of the main character in the cartoon Teenage

Mutant Ninja Turtles. Leonardo da Vinci is from Italy. The thing that

Leonardo da Vinci usually holds in his hand is a katana. The country

of origin of the katana is Japan. The answer is "Japan".

Inference Chaining

Input: Jennifer looked out her window and sees a really cool cloud below
her. She unbuckles her seatbelt and heads to the bathroom. Is Jennifer

probably traveling more than 300 miles per hour relative to the earth?

Model Output: 300 miles per hour is about 480 km/h. This is about the
speed of a commercial airplane. Clouds are usually below airplanes, so

Jennifer is probably on an airplane. The answer is "yes".

Figure 19: Each “Input” was independently prepended with the same 2-shot exemplar shown at the top, and
“Model Output” shows the greedy decoding output of PaLM 540B. The two exemplar jokes are known jokes
(explanations written by authors), while all evaluated jokes were written by the authors. Of course, these
jokes do share abstract premises with existing jokes (wordplay, reliability, humorous analogies, reversal-of-
expectations). The inference chaining examples were also written by the authors.

38

(Chowdhery et al., 2022)

François Fleuret Deep learning / 13.3. Transformer Networks 27 / 42

Input: I was supposed to start writing the paper at 5:00 PM. But then I
started playing with this cool new language model for 10 minutes. 10

minutes later, it's suddenly 9:30 PM!

Model Output: This joke is about how time flies when you're having fun.
The person was supposed to start writing a paper at 5:00 PM, but they

started playing with a language model instead. They thought they were

only playing with it for 10 minutes, but it was actually 4.5 hours.

I will explain these jokes:
(1) The problem with kleptomaniacs is that they always take things literally.
Explanation: This joke is wordplay. Someone who "takes things literally" is someone who doesn't fully understand social cues and context, which is a negative trait.
But the definition of kleptomania is someone who literally takes things.
(2) Always borrow money from a pessimist. They’ll never expect it back.
Explanation: Most people expect you to pay them back when you borrow money, however a pessimist is someone who always assumes the worst, so if you borrow money from
them, they will expect that you won't pay them back anyways.

Input: I was going to fly to visit my family on April 6th. My mom said
"Oh great, your step dad's poetry reading is that night!" So now I'm

flying in on April 7th.

Model Output: The joke is that the speaker's mother is trying to get
them to go to their step dad's poetry reading, but the speaker doesn't

want to go, so they are changing their flight to the day after the

poetry reading.

Input: I think I understand why me and my partner are such a good match.
I get excited when I smell food and become super alert when the

doorbell rings. My girlfriend Shelley becomes ecstatic when she sees a

person who she just saw 5 hours ago.

Model Output: This joke is about dogs. Dogs get excited when they smell
food and when the doorbell rings. The girlfriend is excited to see

someone she just saw 5 hours ago, which is a trait of dogs.

Input: Reading "War and Peace" doesn't scare me. I once had to review the
CL for my intern's whole project on his final day!

Model Output: 'War and Peace' is a very long book, so reading it is a
daunting task. However, the speaker is saying they had to review the

code for their intern's project on their final day, which is even more

daunting.

Input: I tried 10,000 random restarts of my neural network, but I was
accused of overfitting. I guess no good seed goes unpunished.

Model Output: This joke is a pun. A neural network is a computer
program that can learn from data. A "seed" is a number that is used to

initialize a random number generator. A "good seed" is a number that

produces a good random number generator. The phrase "no good deed goes

unpunished" means that if you do something good, you will be punished

for it.

Input: What's the difference between a zebra and an umbrella? One is a
striped animal related to horses, another is a device you use to stop

the rain from falling on you.

Model Output: This joke is an anti-joke. The joke is that the answer
is obvious, and the joke is that you were expecting a funny answer.

Explaining a Joke

Input: When I found out my grandma was in the hospital I felt a
particular color. When someone cut me off in traffic I felt a

different color. What is the most likely color I would see if I

combined these two colors?

Model Output: The color that I felt when I found out my grandma was in
the hospital was likely a sad color, like blue. The color that I felt

when someone cut me off in traffic was likely an angry color, like

red. If I combined these two colors, I would likely see purple. The

answer is "purple".

I will explain how to make logical inferences:
(1) John wakes to the sound of his children giggling outside the door. They bust in and say "Happy Father's Day!" with a plate full of food. 2022 has been a great
year. Can we infer that John was born before the inauguration of Barack Obama?
Answer: We can infer that John is a father because of "his children". We can infer that the current year is 2022. Barack Obama was inaugurated in 2009, so it has been
about 13 years since Obama was inaugurated. John's children are old enough to speak, so if John were born after Obama's inauguration, he would have been younger than
10 when he had children. So, we can infer that John was born before Obama's inauguration. The answer is "yes".
(2) Sam sees a piano in the subway stations. Laughing, his friends prod him to play, saying "Remember how amazing your rendition of Chopsticks was at the Christmas
party?" Can we infer that John majored in piano at Juilliard?
Answer: Juilliard is a top school for music, so someone who majored in piano at Juilliard would be an expert pianist. "Chopsticks" is a very simple song to play on
the piano. His friends were therefore likely being sarcastic when they told him to play, which would imply that Sam was not an expert piano player. So it is unlikely
that Sam majored in piano at Juilliard. The answer is "no".

Input: Guido was writing a Python program. He keeps getting confused by
variable scope and looking it up on StackOverflow. Is it possible that

the Guido in the prompt refers to Guido van Rossum?

Model Output: Guido van Rossum is the creator of Python. He would not
need to look up variable scope on StackOverflow. The answer is "no".

Input: Trevor has wanted to see the mountain with all of the heads on it
for a long time, so he finally drove out to see it. What is the capital

of the state that is directly east of the state that Trevor is currently

in?

Model Output: The mountain with all of the heads on it is Mount
Rushmore. Mount Rushmore is in South Dakota. The state directly east of

South Dakota is Minnesota. The capital of Minnesota is St. Paul. The

answer is "St. Paul".

Input: Michael is at that really famous museum in France looking at
its most famous painting. However, the artist who made this painting

just makes Michael think of his favorite cartoon character from his

childhood. What was the country of origin of the thing that the

cartoon character usually holds in his hand?

Model Output: The most famous painting in the Louvre is the Mona
Lisa. The artist who made the Mona Lisa is Leonardo da Vinci. Leonardo

da Vinci is also the name of the main character in the cartoon Teenage

Mutant Ninja Turtles. Leonardo da Vinci is from Italy. The thing that

Leonardo da Vinci usually holds in his hand is a katana. The country

of origin of the katana is Japan. The answer is "Japan".

Inference Chaining

Input: Jennifer looked out her window and sees a really cool cloud below
her. She unbuckles her seatbelt and heads to the bathroom. Is Jennifer

probably traveling more than 300 miles per hour relative to the earth?

Model Output: 300 miles per hour is about 480 km/h. This is about the
speed of a commercial airplane. Clouds are usually below airplanes, so

Jennifer is probably on an airplane. The answer is "yes".

Figure 19: Each “Input” was independently prepended with the same 2-shot exemplar shown at the top, and
“Model Output” shows the greedy decoding output of PaLM 540B. The two exemplar jokes are known jokes
(explanations written by authors), while all evaluated jokes were written by the authors. Of course, these
jokes do share abstract premises with existing jokes (wordplay, reliability, humorous analogies, reversal-of-
expectations). The inference chaining examples were also written by the authors.

38

(Chowdhery et al., 2022)

François Fleuret Deep learning / 13.3. Transformer Networks 28 / 42

Summary:

• The original Transformer (Vaswani et al., 2017) combines an encoder composed of
blocks each made of a self-attention layer, and a per-token MLP, and a decoder
composed of blocks each made of a causal self-attention layer, a cross attention
layer, and a per-token MLP.

• BERT (Devlin et al., 2018) has the structure of the Transformer’s encoder.

• GPT (Radford, 2018; Radford et al., 2019) has the structure of the Transformer’s
decoder without cross-attention.

• A model can be self-trained to predict masked words (BERT), or for
auto-regression (GPT), and fine-tuned on downstream tasks.

• Special tokens can separate parts of inputs (e.g. question / answer) or indicate the
output token used for prediction (e.g. sentiment analysis).

• These models scale extremely well to 100s of billions of tokens and parameters
(Kaplan et al., 2020)

• Auto-regressive language models can be primed to solve with remarkable accuracy
zero-shot learning tasks (Brown et al., 2020; Chowdhery et al., 2022).

François Fleuret Deep learning / 13.3. Transformer Networks 29 / 42

Vision Transformers

François Fleuret Deep learning / 13.3. Transformer Networks 30 / 42

As in NLP, attention mechanisms in vision allow models to leverage long-term
dependencies that would require many convolutional layers, e.g. for Self-Attention
Generative Adversarial Networks (SAGANs):

Self-Attention Generative Adversarial Networks

Figure 2. The proposed self-attention module for the SAGAN. The ⊗ denotes matrix multiplication. The softmax operation is performed
on each row.

4.2. Imbalanced learning rate for generator and
discriminator updates

In previous work, regularization of the discriminator (Miy-
ato et al., 2018; Gulrajani et al., 2017) often slows down
the GANs’ learning process. In practice, methods using
regularized discriminators typically require multiple (e.g.,
5) discriminator update steps per generator update step dur-
ing training. Independently, Heusel et al. (Heusel et al.,
2017) have advocated using separate learning rates (TTUR)
for the generator and the discriminator. We propose using
TTUR specifically to compensate for the problem of slow
learning in a regularized discriminator, making it possible
to use fewer discriminator steps per generator step. Using
this approach, we are able to produce better results given
the same wall-clock time.

5. Experiments
To evaluate the proposed methods, we conducted extensive
experiments on the LSVRC2012 (ImageNet) dataset (Rus-
sakovsky et al., 2015). First, in Section 5.1, we present
experiments designed to evaluate the effectiveness of the
two proposed techniques for stabilizing GANs’ training.
Next, the proposed self-attention mechanism is investigated
in Section 5.2. Finally, our SAGAN is compared with state-
of-the-art methods (Odena et al., 2017; Miyato & Koyama,
2018) on the image generation task in Section 5.3. Models
were trained for roughly 2 weeks on 4 GPUs each, using
sychronous SGD (as there are well known difficulties with
asynchronous SGD - see e.g. (Odena, 2016)).

Evaluation metrics. We choose the Inception score
(IS) (Salimans et al., 2016) and the Fréchet Inception dis-
tance (FID) (Heusel et al., 2017) for quantitative evaluation.
Though alternatives exist (Zhou et al., 2019; Khrulkov &
Oseledets, 2018; Olsson et al., 2018), they are not widely
used. The Inception score (Salimans et al., 2016) computes
the KL divergence between the conditional class distribu-

tion and the marginal class distribution. Higher Inception
score indicates better image quality. We include the In-
ception score because it is widely used and thus makes it
possible to compare our results to previous work. However,
it is important to understand that Inception score has seri-
ous limitations—it is intended primarily to ensure that the
model generates samples that can be confidently recognized
as belonging to a specific class, and that the model generates
samples from many classes, not necessarily to assess realism
of details or intra-class diversity. FID is a more principled
and comprehensive metric, and has been shown to be more
consistent with human evaluation in assessing the realism
and variation of the generated samples (Heusel et al., 2017).
FID calculates the Wasserstein-2 distance between the gen-
erated images and the real images in the feature space of
an Inception-v3 network. Besides the FID calculated over
the whole data distribution (i.e.., all 1000 classes of images
in ImageNet), we also compute FID between the generated
images and dataset images within each class (called intra
FID (Miyato & Koyama, 2018)). Lower FID and intra FID
values mean closer distances between synthetic and real data
distributions. In all our experiments, 50k samples are ran-
domly generated for each model to compute the Inception
score, FID and intra FID.

Network structures and implementation details. All
the SAGAN models we train are designed to generate
128×128 images. By default, spectral normalization (Miy-
ato et al., 2018) is used for the layers in both the generator
and the discriminator. Similar to (Miyato & Koyama, 2018),
SAGAN uses conditional batch normalization in the gen-
erator and projection in the discriminator. For all models,
we use the Adam optimizer (Kingma & Ba, 2015) with
β1 = 0 and β2 = 0.9 for training. By default, the learning
rate for the discriminator is 0.0004 and the learning rate for
the generator is 0.0001.

“The self-attention module is complementary to convolutions and helps with
modeling long range, multi-level dependencies across image regions. Armed
with self-attention, the generator can draw images in which fine details at
every location are carefully coordinated with fine details in distant portions
of the image.”

(Zhang et al., 2018)

François Fleuret Deep learning / 13.3. Transformer Networks 31 / 42

The Vision Transformer (ViT, Dosovitskiy et al. 2020) is a very simple architecture for
image classification.

“Inspired by the Transformer scaling successes in NLP, we experiment with
applying a standard Transformer directly to images, with the fewest possible
modifications. To do so, we split an image into patches and provide the
sequence of linear embeddings of these patches as an input to a Transformer.
Image patches are treated the same way as tokens (words) in an NLP appli-
cation. We train the model on image classification in supervised fashion.”

(Dosovitskiy et al., 2020)

François Fleuret Deep learning / 13.3. Transformer Networks 32 / 42

Transformer Encoder

MLP
Head

Vision Transformer (ViT)

*

Linear Projection of Flattened Patches
* Extra learnable

 [c l ass] embedding

1 2 3 4 5 6 7 8 90Patch + Position
Embedding

Class
Bird
Ball
Car
...

Embedded
Patches

Multi-Head
Attention

Norm

MLP

Norm

+L x

+

Transformer Encoder

(Dosovitskiy et al., 2020)

François Fleuret Deep learning / 13.3. Transformer Networks 33 / 42

Preprint. Under review.

Model Layers Hidden size D MLP size Heads Params

ViT-Base 12 768 3072 12 86M
ViT-Large 24 1024 4096 16 307M
ViT-Huge 32 1280 5120 16 632M

Table 1: Details of Vision Transformer model variants.

Ours-JFT Ours-JFT Ours-I21K BiT-L Noisy Student
(ViT-H/14) (ViT-L/16) (ViT-L/16) (ResNet152x4) (EfficientNet-L2)

ImageNet 88.55± 0.04 87.76± 0.03 85.30± 0.02 87.54± 0.02 88.4/88.5∗

ImageNet ReaL 90.72± 0.05 90.54± 0.03 88.62± 0.05 90.54 90.55
CIFAR-10 99.50± 0.06 99.42± 0.03 99.15± 0.03 99.37± 0.06 −
CIFAR-100 94.55± 0.04 93.90± 0.05 93.25± 0.05 93.51± 0.08 −
Oxford-IIIT Pets 97.56± 0.03 97.32± 0.11 94.67± 0.15 96.62± 0.23 −
Oxford Flowers-102 99.68± 0.02 99.74± 0.00 99.61± 0.02 99.63± 0.03 −
VTAB (19 tasks) 77.63± 0.23 76.28± 0.46 72.72± 0.21 76.29± 1.70 −
TPUv3-core-days 2.5k 0.68k 0.23k 9.9k 12.3k

Table 2: Comparison with state of the art on popular image classification benchmarks. We re-
port mean and standard deviation of the accuracies, averaged over three fine-tuning runs. Vision
Transformer models pre-trained on the JFT-300M dataset outperform ResNet-based baselines on all
datasets, while taking substantially less computational resources to pre-train. ViT pre-trained on the
smaller public ImageNet-21k dataset performs well too. ∗Slightly improved 88.5% result reported
in Touvron et al. (2020).

for transfer of all models (Appendix D.1 shows that, in contrast to common practices, Adam works
slightly better than SGD for ResNets in our setting). We use a linear learning rate warmup and decay,
see Appendix B.1 for details. For fine-tuning we use SGD with momentum, batch size 512, for all
models, see Appendix B.1.1. For ImageNet results in Table 2, we fine-tuned at higher resolution:
512 for ViT-L/16 and 518 for ViT-H/14, and also used Polyak & Juditsky (1992) averaging with a
factor of 0.9999 (Ramachandran et al., 2019; Wang et al., 2020b).

Metrics. We report results on downstream datasets either through few-shot or fine-tuning accuracy.
Fine-tuning accuracies capture the performance of each model after fine-tuning it on the respective
dataset. Few-shot accuracies are obtained by solving a regularized linear regression problem that
maps the (frozen) representation of a subset of training images to {−1, 1}K target vectors. Though
we mainly focus on fine-tuning performance, we sometimes use linear few-shot accuracies for fast
on-the-fly evaluation where fine-tuning would be too costly.

4.2 COMPARISON TO STATE OF THE ART

We first compare our largest models – ViT-H/14 and ViT-L/16 – to state-of-the-art CNNs from
the literature. The first comparison point is Big Transfer (BiT) (Kolesnikov et al., 2020), which
performs supervised transfer learning with large ResNets. The second is Noisy Student (Xie et al.,
2020), which is a large EfficientNet trained using semi-supervised learning on ImageNet and JFT-
300M with the labels removed. Currently, Noisy Student is the state of the art on ImageNet and
BiT-L on the other datasets reported here. All models were trained on TPUv3 hardware, and we
report the number of TPUv3-core-days taken to pre-train each of them, that is, the number of TPU
v3 cores (2 per chip) used for training multiplied by the training time in days.

Table 2 shows the results. The smaller ViT-L/16 model pre-trained on JFT-300M outperforms BiT-L
(which is pre-trained on the same dataset) on all tasks, while requiring substantially less computa-
tional resources to train. The larger model, ViT-H/14, further improves the performance, especially
on the more challenging datasets – ImageNet, CIFAR-100, and the VTAB suite. Interestingly, this
model still took substantially less compute to pre-train than prior state of the art. However, we note
that pre-training efficiency may be affected not only by the architecture choice, but also other pa-
rameters, such as training schedule, optimizer, weight decay, etc. We provide a controlled study of
performance vs. compute for different architectures in Section 4.4. Finally, the ViT-L/16 model

5

ImageNet ImageNet-21k JFT-300M
Pre-training dataset

70

75

80

85

90

Im
ag

eN
et

To
p1

 A
cc

ur
ac

y
[%

]

BiT
ViT-B/32
ViT-B/16

ViT-L/32
ViT-L/16
ViT-H/14

10 M 30 M 100 M 300 M
Number of JFT pre-training samples

30

40

50

60

70

Li
ne

ar
 5

-sh
ot

 Im
ag

eN
et

To
p1

 [%
]

ViT-L/16
ViT-L/32

ViT-B/32
ViT-b/32

ResNet50x1 (BiT)
ResNet152x2 (BiT)

(Dosovitskiy et al., 2020)

François Fleuret Deep learning / 13.3. Transformer Networks 34 / 42

Notes

With large pre-training, Vision Transformers
(ViT) performs better than Resnets adapted to
“Big Transfer” (BiT).

102 103

90

95
Tr

an
sfe

r a
cc

ur
ac

y
[%

]

Average-5

Transformer (ViT)
ResNet (BiT)
Hybrid

102 10375

80

85

90
ImageNet

Transformer (ViT)
ResNet (BiT)
Hybrid

Total pre-training compute [exaFLOPs]

1 exaFLOPs ≃ 1h RTX 3090

(Dosovitskiy et al., 2020)

François Fleuret Deep learning / 13.3. Transformer Networks 35 / 42

RGB embedding filters
(first 28 principal components)

1 2 3 4 5 6 7
Input patch column

1

2

3

4

5

6

7

In
pu

t p
at

ch
 ro

w

Position embedding similarity

1

1

Co
sin

e
sim

ila
rit

y

(Dosovitskiy et al., 2020)

François Fleuret Deep learning / 13.3. Transformer Networks 36 / 42

Notes

The left figure shows filters learned to encode the
patches. They exhibit the expected structure of
an image linear basis.
The right image shows for every one of the 7× 7
patch positions the similarity of its positional
encoding with the positional encodings of all
other patches. The learned encodings reflect the
rows and columns, and more generally the 2d
structure of the image lattice.

0 5 10 15 20
Network depth (layer)

0

20

40

60

80

100

120

M
ea

n
at

te
nt

io
n

di
st

an
ce

 (p
ix

el
s)

ViT-L/16

Head 1
Head 2
Head 3
...

(Dosovitskiy et al., 2020)

François Fleuret Deep learning / 13.3. Transformer Networks 37 / 42

Notes

This scatter plot shows for every layer and every
head the average distance in pixels between a
patch and the patches it attends too.
Early layers have very diverse “attention dis-
tances”, while the last one tend to have long
distance attention only.

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

65 66 67 68 69 70 71 72

73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88

89 90 91 92 93 94 95 96

97 98 99 100 101 102 103 104

105 106 107 108 109 110 111 112

113 114 115 116 117 118 119 120

121 122 123 124 125 126 127 128

(Dosovitskiy et al., 2020)

François Fleuret Deep learning / 13.3. Transformer Networks 38 / 42

Notes

This picture is obtained by looking at the atten-
tion of the output token and then going backward
through layers, multiplying by the attention aver-
aged across heads for each.

The Swin Transformer (Liu et al., 2021) improves the ViT architectures through the use
of hierarchical representation with local attention in shifting windows.

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

Ze Liu†* Yutong Lin†* Yue Cao* Han Hu*‡ Yixuan Wei†

Zheng Zhang Stephen Lin Baining Guo
Microsoft Research Asia

{v-zeliu1,v-yutlin,yuecao,hanhu,v-yixwe,zhez,stevelin,bainguo}@microsoft.com

Abstract

This paper presents a new vision Transformer, called
Swin Transformer, that capably serves as a general-purpose
backbone for computer vision. Challenges in adapting
Transformer from language to vision arise from differences
between the two domains, such as large variations in the
scale of visual entities and the high resolution of pixels
in images compared to words in text. To address these
differences, we propose a hierarchical Transformer whose
representation is computed with Shifted windows. The
shifted windowing scheme brings greater efficiency by lim-
iting self-attention computation to non-overlapping local
windows while also allowing for cross-window connection.
This hierarchical architecture has the flexibility to model
at various scales and has linear computational complexity
with respect to image size. These qualities of Swin Trans-
former make it compatible with a broad range of vision
tasks, including image classification (87.3 top-1 accuracy
on ImageNet-1K) and dense prediction tasks such as object
detection (58.7 box AP and 51.1 mask AP on COCO test-
dev) and semantic segmentation (53.5 mIoU on ADE20K
val). Its performance surpasses the previous state-of-the-
art by a large margin of +2.7 box AP and +2.6 mask AP on
COCO, and +3.2 mIoU on ADE20K, demonstrating the po-
tential of Transformer-based models as vision backbones.
The hierarchical design and the shifted window approach
also prove beneficial for all-MLP architectures. The code
and models are publicly available at https://github.
com/microsoft/Swin-Transformer.

1. Introduction

Modeling in computer vision has long been dominated
by convolutional neural networks (CNNs). Beginning with
AlexNet [39] and its revolutionary performance on the
ImageNet image classification challenge, CNN architec-
tures have evolved to become increasingly powerful through

*Equal contribution. †Interns at MSRA. ‡Contact person.

Figure 1. (a) The proposed Swin Transformer builds hierarchical
feature maps by merging image patches (shown in gray) in deeper
layers and has linear computation complexity to input image size
due to computation of self-attention only within each local win-
dow (shown in red). It can thus serve as a general-purpose back-
bone for both image classification and dense recognition tasks.
(b) In contrast, previous vision Transformers [20] produce fea-
ture maps of a single low resolution and have quadratic compu-
tation complexity to input image size due to computation of self-
attention globally.

greater scale [30, 76], more extensive connections [34], and
more sophisticated forms of convolution [70, 18, 84]. With
CNNs serving as backbone networks for a variety of vision
tasks, these architectural advances have led to performance
improvements that have broadly lifted the entire field.

On the other hand, the evolution of network architectures
in natural language processing (NLP) has taken a different
path, where the prevalent architecture today is instead the
Transformer [64]. Designed for sequence modeling and
transduction tasks, the Transformer is notable for its use
of attention to model long-range dependencies in the data.
Its tremendous success in the language domain has led re-
searchers to investigate its adaptation to computer vision,
where it has recently demonstrated promising results on cer-
tain tasks, specifically image classification [20] and joint
vision-language modeling [47].

In this paper, we seek to expand the applicability of
Transformer such that it can serve as a general-purpose

ar
X

iv
:2

10
3.

14
03

0v
2

 [
cs

.C
V

]
 1

7
A

ug
 2

02
1

backbone for computer vision, as it does for NLP and
as CNNs do in vision. We observe that significant chal-
lenges in transferring its high performance in the language
domain to the visual domain can be explained by differ-
ences between the two modalities. One of these differ-
ences involves scale. Unlike the word tokens that serve
as the basic elements of processing in language Trans-
formers, visual elements can vary substantially in scale, a
problem that receives attention in tasks such as object de-
tection [42, 53, 54]. In existing Transformer-based mod-
els [64, 20], tokens are all of a fixed scale, a property un-
suitable for these vision applications. Another difference
is the much higher resolution of pixels in images com-
pared to words in passages of text. There exist many vi-
sion tasks such as semantic segmentation that require dense
prediction at the pixel level, and this would be intractable
for Transformer on high-resolution images, as the compu-
tational complexity of its self-attention is quadratic to im-
age size. To overcome these issues, we propose a general-
purpose Transformer backbone, called Swin Transformer,
which constructs hierarchical feature maps and has linear
computational complexity to image size. As illustrated in
Figure 1(a), Swin Transformer constructs a hierarchical rep-
resentation by starting from small-sized patches (outlined in
gray) and gradually merging neighboring patches in deeper
Transformer layers. With these hierarchical feature maps,
the Swin Transformer model can conveniently leverage ad-
vanced techniques for dense prediction such as feature pyra-
mid networks (FPN) [42] or U-Net [51]. The linear compu-
tational complexity is achieved by computing self-attention
locally within non-overlapping windows that partition an
image (outlined in red). The number of patches in each
window is fixed, and thus the complexity becomes linear
to image size. These merits make Swin Transformer suit-
able as a general-purpose backbone for various vision tasks,
in contrast to previous Transformer based architectures [20]
which produce feature maps of a single resolution and have
quadratic complexity.

A key design element of Swin Transformer is its shift
of the window partition between consecutive self-attention
layers, as illustrated in Figure 2. The shifted windows
bridge the windows of the preceding layer, providing con-
nections among them that significantly enhance modeling
power (see Table 4). This strategy is also efficient in re-
gards to real-world latency: all query patches within a win-
dow share the same key set1, which facilitates memory ac-
cess in hardware. In contrast, earlier sliding window based
self-attention approaches [33, 50] suffer from low latency
on general hardware due to different key sets for different
query pixels2. Our experiments show that the proposed

1The query and key are projection vectors in a self-attention layer.
2While there are efficient methods to implement a sliding-window

based convolution layer on general hardware, thanks to its shared kernel

Figure 2. An illustration of the shifted window approach for com-
puting self-attention in the proposed Swin Transformer architec-
ture. In layer l (left), a regular window partitioning scheme is
adopted, and self-attention is computed within each window. In
the next layer l + 1 (right), the window partitioning is shifted, re-
sulting in new windows. The self-attention computation in the new
windows crosses the boundaries of the previous windows in layer
l, providing connections among them.

shifted window approach has much lower latency than the
sliding window method, yet is similar in modeling power
(see Tables 5 and 6). The shifted window approach also
proves beneficial for all-MLP architectures [61].

The proposed Swin Transformer achieves strong perfor-
mance on the recognition tasks of image classification, ob-
ject detection and semantic segmentation. It outperforms
the ViT / DeiT [20, 63] and ResNe(X)t models [30, 70] sig-
nificantly with similar latency on the three tasks. Its 58.7
box AP and 51.1 mask AP on the COCO test-dev set sur-
pass the previous state-of-the-art results by +2.7 box AP
(Copy-paste [26] without external data) and +2.6 mask AP
(DetectoRS [46]). On ADE20K semantic segmentation, it
obtains 53.5 mIoU on the val set, an improvement of +3.2
mIoU over the previous state-of-the-art (SETR [81]). It also
achieves a top-1 accuracy of 87.3% on ImageNet-1K image
classification.

It is our belief that a unified architecture across com-
puter vision and natural language processing could benefit
both fields, since it would facilitate joint modeling of vi-
sual and textual signals and the modeling knowledge from
both domains can be more deeply shared. We hope that
Swin Transformer’s strong performance on various vision
problems can drive this belief deeper in the community and
encourage unified modeling of vision and language signals.

2. Related Work
CNN and variants CNNs serve as the standard network
model throughout computer vision. While the CNN has ex-
isted for several decades [40], it was not until the introduc-
tion of AlexNet [39] that the CNN took off and became
mainstream. Since then, deeper and more effective con-
volutional neural architectures have been proposed to fur-
ther propel the deep learning wave in computer vision, e.g.,
VGG [52], GoogleNet [57], ResNet [30], DenseNet [34],

weights across a feature map, it is difficult for a sliding-window based
self-attention layer to have efficient memory access in practice.

2

(Liu et al., 2021)

François Fleuret Deep learning / 13.3. Transformer Networks 39 / 42

The DETR algorithm (Carion et al., 2020) combines a CNN and a transformer for
object detection.

End-to-End Object Detection with Transformers 7

CNN

set of image features

transformer
encoder

…

…

positional encoding

+ transformer
decoder

class,
box

class,
box

no
object

no
object

FFN

FFN

FFN

FFN
object queries

backbone encoder decoder prediction heads

Fig. 2: DETR uses a conventional CNN backbone to learn a 2D representation of an
input image. The model flattens it and supplements it with a positional encoding before
passing it into a transformer encoder. A transformer decoder then takes as input a
small fixed number of learned positional embeddings, which we call object queries, and
additionally attends to the encoder output. We pass each output embedding of the
decoder to a shared feed forward network (FFN) that predicts either a detection (class
and bounding box) or a “no object” class.

Transformer decoder. The decoder follows the standard architecture of the
transformer, transforming N embeddings of size d using multi-headed self- and
encoder-decoder attention mechanisms. The difference with the original trans-
former is that our model decodes the N objects in parallel at each decoder layer,
while Vaswani et al. [47] use an autoregressive model that predicts the output
sequence one element at a time. We refer the reader unfamiliar with the concepts
to the supplementary material. Since the decoder is also permutation-invariant,
the N input embeddings must be different to produce different results. These in-
put embeddings are learnt positional encodings that we refer to as object queries,
and similarly to the encoder, we add them to the input of each attention layer.
The N object queries are transformed into an output embedding by the decoder.
They are then independently decoded into box coordinates and class labels by
a feed forward network (described in the next subsection), resulting N final
predictions. Using self- and encoder-decoder attention over these embeddings,
the model globally reasons about all objects together using pair-wise relations
between them, while being able to use the whole image as context.

Prediction feed-forward networks (FFNs). The final prediction is com-
puted by a 3-layer perceptron with ReLU activation function and hidden dimen-
sion d, and a linear projection layer. The FFN predicts the normalized center
coordinates, height and width of the box w.r.t. the input image, and the lin-
ear layer predicts the class label using a softmax function. Since we predict a
fixed-size set of N bounding boxes, where N is usually much larger than the
actual number of objects of interest in an image, an additional special class la-
bel ∅ is used to represent that no object is detected within a slot. This class
plays a similar role to the “background” class in the standard object detection
approaches.

Auxiliary decoding losses. We found helpful to use auxiliary losses [1] in
decoder during training, especially to help the model output the correct number

Transformer

End-to-End Object Detection with Transformers 5

boxes; (2) an architecture that predicts (in a single pass) a set of objects and
models their relation. We describe our architecture in detail in Figure 2.

3.1 Object detection set prediction loss

DETR infers a fixed-size set of N predictions, in a single pass through the
decoder, where N is set to be significantly larger than the typical number of
objects in an image. One of the main difficulties of training is to score predicted
objects (class, position, size) with respect to the ground truth. Our loss produces
an optimal bipartite matching between predicted and ground truth objects, and
then optimize object-specific (bounding box) losses.

Let us denote by y the ground truth set of objects, and ŷ = {ŷi}Ni=1 the
set of N predictions. Assuming N is larger than the number of objects in the
image, we consider y also as a set of size N padded with ∅ (no object). To find
a bipartite matching between these two sets we search for a permutation of N
elements σ ∈ SN with the lowest cost:

σ̂ = arg min
σ∈SN

N∑

i

Lmatch(yi, ŷσ(i)), (1)

where Lmatch(yi, ŷσ(i)) is a pair-wise matching cost between ground truth yi and
a prediction with index σ(i). This optimal assignment is computed efficiently
with the Hungarian algorithm, following prior work (e.g . [43]).

The matching cost takes into account both the class prediction and the sim-
ilarity of predicted and ground truth boxes. Each element i of the ground truth
set can be seen as a yi = (ci, bi) where ci is the target class label (which
may be ∅) and bi ∈ [0, 1]4 is a vector that defines ground truth box cen-
ter coordinates and its height and width relative to the image size. For the
prediction with index σ(i) we define probability of class ci as p̂σ(i)(ci) and

the predicted box as b̂σ(i). With these notations we define Lmatch(yi, ŷσ(i)) as

−1{ci 6=∅}p̂σ(i)(ci) + 1{ci 6=∅}Lbox(bi, b̂σ(i)).
This procedure of finding matching plays the same role as the heuristic assign-

ment rules used to match proposal [37] or anchors [22] to ground truth objects
in modern detectors. The main difference is that we need to find one-to-one
matching for direct set prediction without duplicates.

The second step is to compute the loss function, the Hungarian loss for all
pairs matched in the previous step. We define the loss similarly to the losses of
common object detectors, i.e. a linear combination of a negative log-likelihood
for class prediction and a box loss defined later:

LHungarian(y, ŷ) =

N∑

i=1

[
− log p̂σ̂(i)(ci) + 1{ci 6=∅}Lbox(bi, b̂σ̂(i))

]
, (2)

where σ̂ is the optimal assignment computed in the first step (1). In practice, we
down-weight the log-probability term when ci = ∅ by a factor 10 to account for

(Carion et al., 2020)

François Fleuret Deep learning / 13.3. Transformer Networks 40 / 42

Notes

A CNN converts the original image into a tensor
of 1/32 the size, which is flatten as a sequence
of tokens.
The sequence if then fed into a Transformer with
a non-causal feed-forward decoder (as opposed to
the standard auto-regressive one). The maximum
number of detections is specified by the number
initial “object queries” given to the decoder.
The final read-out is done with a per-token MLP
that maps the internal feature dimension to the
box coordinates, and a linear layer that maps the
internal feature representation to the class (+
“background”) logits.
The loss is computed for an optimal matching σ
computed with the Hungarian algorithm between
the ground truth and the N predicted detections.

End-to-End Object Detection with Transformers 9

Table 1: Comparison with Faster R-CNN with a ResNet-50 and ResNet-101 backbones
on the COCO validation set. The top section shows results for Faster R-CNN models
in Detectron2 [50], the middle section shows results for Faster R-CNN models with
GIoU [38], random crops train-time augmentation, and the long 9x training schedule.
DETR models achieve comparable results to heavily tuned Faster R-CNN baselines,
having lower APS but greatly improved APL. We use torchscript Faster R-CNN and
DETR models to measure FLOPS and FPS. Results without R101 in the name corre-
spond to ResNet-50.

Model GFLOPS/FPS #params AP AP50 AP75 APS APM APL

Faster RCNN-DC5 320/16 166M 39.0 60.5 42.3 21.4 43.5 52.5
Faster RCNN-FPN 180/26 42M 40.2 61.0 43.8 24.2 43.5 52.0
Faster RCNN-R101-FPN 246/20 60M 42.0 62.5 45.9 25.2 45.6 54.6

Faster RCNN-DC5+ 320/16 166M 41.1 61.4 44.3 22.9 45.9 55.0
Faster RCNN-FPN+ 180/26 42M 42.0 62.1 45.5 26.6 45.4 53.4
Faster RCNN-R101-FPN+ 246/20 60M 44.0 63.9 47.8 27.2 48.1 56.0

DETR 86/28 41M 42.0 62.4 44.2 20.5 45.8 61.1
DETR-DC5 187/12 41M 43.3 63.1 45.9 22.5 47.3 61.1
DETR-R101 152/20 60M 43.5 63.8 46.4 21.9 48.0 61.8
DETR-DC5-R101 253/10 60M 44.9 64.7 47.7 23.7 49.5 62.3

time, some slots predict empty class. To optimize for AP, we override the predic-
tion of these slots with the second highest scoring class, using the corresponding
confidence. This improves AP by 2 points compared to filtering out empty slots.
Other training hyperparameters can be found in section A.4. For our ablation
experiments we use training schedule of 300 epochs with a learning rate drop
by a factor of 10 after 200 epochs, where a single epoch is a pass over all train-
ing images once. Training the baseline model for 300 epochs on 16 V100 GPUs
takes 3 days, with 4 images per GPU (hence a total batch size of 64). For the
longer schedule used to compare with Faster R-CNN we train for 500 epochs
with learning rate drop after 400 epochs. This schedule adds 1.5 AP compared
to the shorter schedule.

4.1 Comparison with Faster R-CNN

Transformers are typically trained with Adam or Adagrad optimizers with very
long training schedules and dropout, and this is true for DETR as well. Faster
R-CNN, however, is trained with SGD with minimal data augmentation and
we are not aware of successful applications of Adam or dropout. Despite these
differences we attempt to make a Faster R-CNN baseline stronger. To align it
with DETR, we add generalized IoU [38] to the box loss, the same random
crop augmentation and long training known to improve results [13]. Results
are presented in Table 1. In the top section we show Faster R-CNN results
from Detectron2 Model Zoo [50] for models trained with the 3x schedule. In the
middle section we show results (with a “+”) for the same models but trained

(Carion et al., 2020)

François Fleuret Deep learning / 13.3. Transformer Networks 41 / 42

End-to-End Object Detection with Transformers 11

self-attention(430, 600)

self-attention(520, 450)

self-attention(450, 830)

self-attention(440, 1200)

Fig. 3: Encoder self-attention for a set of reference points. The encoder is able to sep-
arate individual instances. Predictions are made with baseline DETR model on a vali-
dation set image.

dict objects out of the outputs of every decoder layer. We analyze the importance
of each decoder layer by evaluating the objects that would be predicted at each
stage of the decoding (Fig. 4). Both AP and AP50 improve after every layer,
totalling into a very significant +8.2/9.5 AP improvement between the first and
the last layer. With its set-based loss, DETR does not need NMS by design. To
verify this we run a standard NMS procedure with default parameters [50] for
the outputs after each decoder. NMS improves performance for the predictions
from the first decoder. This can be explained by the fact that a single decoding
layer of the transformer is not able to compute any cross-correlations between
the output elements, and thus it is prone to making multiple predictions for the
same object. In the second and subsequent layers, the self-attention mechanism
over the activations allows the model to inhibit duplicate predictions. We ob-
serve that the improvement brought by NMS diminishes as depth increases. At
the last layers, we observe a small loss in AP as NMS incorrectly removes true
positive predictions.

Similarly to visualizing encoder attention, we visualize decoder attentions in
Fig. 6, coloring attention maps for each predicted object in different colors. We
observe that decoder attention is fairly local, meaning that it mostly attends to
object extremities such as heads or legs. We hypothesise that after the encoder
has separated instances via global attention, the decoder only needs to attend
to the extremities to extract the class and object boundaries.

Importance of FFN. FFN inside tranformers can be seen as 1 × 1 convo-
lutional layers, making encoder similar to attention augmented convolutional
networks [3]. We attempt to remove it completely leaving only attention in the
transformer layers. By reducing the number of network parameters from 41.3M
to 28.7M, leaving only 10.8M in the transformer, performance drops by 2.3 AP,
we thus conclude that FFN are important for achieving good results.

Importance of positional encodings. There are two kinds of positional en-
codings in our model: spatial positional encodings and output positional encod-

End-to-End Object Detection with Transformers 13

Fig. 6: Visualizing decoder attention for every predicted object (images from COCO
val set). Predictions are made with DETR-DC5 model. Attention scores are coded with
different colors for different objects. Decoder typically attends to object extremities,
such as legs and heads. Best viewed in color.

Table 3: Results for different positional encodings compared to the baseline (last row),
which has fixed sine pos. encodings passed at every attention layer in both the encoder
and the decoder. Learned embeddings are shared between all layers. Not using spatial
positional encodings leads to a significant drop in AP. Interestingly, passing them in
decoder only leads to a minor AP drop. All these models use learned output positional
encodings.

spatial pos. enc. output pos. enc.
encoder decoder decoder AP ∆ AP50 ∆

none none learned at input 32.8 -7.8 55.2 -6.5
sine at input sine at input learned at input 39.2 -1.4 60.0 -1.6
learned at attn. learned at attn. learned at attn. 39.6 -1.0 60.7 -0.9
none sine at attn. learned at attn. 39.3 -1.3 60.3 -1.4
sine at attn. sine at attn. learned at attn. 40.6 - 61.6 -

Table 4: Effect of loss components on AP. We train two models turning off `1 loss, and
GIoU loss, and observe that `1 gives poor results on its own, but when combined with
GIoU improves APM and APL. Our baseline (last row) combines both losses.

class `1 GIoU AP ∆ AP50 ∆ APS APM APL

X X 35.8 -4.8 57.3 -4.4 13.7 39.8 57.9
X X 39.9 -0.7 61.6 0 19.9 43.2 57.9
X X X 40.6 - 61.6 - 19.9 44.3 60.2

for most of the model performance, losing only 0.7 AP to the baseline with
combined losses. Using `1 without GIoU shows poor results. We only studied

François Fleuret Deep learning / 13.3. Transformer Networks 42 / 42

References

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark,
C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Language models are
few-shot learners. CoRR, abs/2005.14165, 2020.

N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko. End-to-end object
detection with transformers. CoRR, abs/2005.12872, 2020.

A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. Chung,
C. Sutton, S. Gehrmann, P. Schuh, K. Shi, S. Tsvyashchenko, J. Maynez, A. Rao, P. Barnes,
Y. Tay, N. Shazeer, V. Prabhakaran, E. Reif, N. Du, B. Hutchinson, R. Pope, J. Bradbury,
J. Austin, M. Isard, G. Gur-Ari, P. Yin, T. Duke, A. Levskaya, S. Ghemawat, S. Dev,
H. Michalewski, X. Garcia, V. Misra, K. Robinson, L. Fedus, D. Zhou, D. Ippolito, D. Luan,
H. Lim, B. Zoph, A. Spiridonov, R. Sepassi, D. Dohan, S. Agrawal, M. Omernick, A. Dai,
T. Pillai, M. Pellat, A. Lewkowycz, E. Moreira, R. Child, O. Polozov, K. Lee, Z. Zhou, X. Wang,
B. Saeta, M. Diaz, O. Firat, M. Catasta, J. Wei, K. Meier-Hellstern, D. Eck, J. Dean, S. Petrov,
and N. Fiedel. PaLM: Scaling language modeling with pathways. CoRR, abs/2204.02311, 2022.

K. Clark, U. Khandelwal, O. Levy, and C. Manning. What does BERT look at? An analysis of
BERT’s attention. CoRR, abs/1906.04341, 2019.

J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. CoRR, abs/1810.04805, 2018.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale. CoRR, abs/2010.11929, 2020.

J. Kaplan, S. McCandlish, T. Henighan, T. Brown, B. Chess, R. Child, S. Gray, A. Radford, J. Wu,
and D. Amodei. Scaling laws for neural language models. CoRR, abs/2001.08361, 2020.

Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. CoRR, abs/2103.14030, 2021.

A. Radford. Improving language understanding with unsupervised learning. web, June 2018.
https://openai.com/blog/language-unsupervised/.

A. Radford, J. Wu, D. Amodei, D. Amodei, J. Clark, M. Brundage, and I. Sutskever. Better
language models and their implications. web, February 2019.
https://blog.openai.com/better-language-models/.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. CoRR, abs/1706.03762, 2017.

Q. Wang, B. Li, T. Xiao, J. Zhu, C. Li, D. Wong, and L. Chao. Learning deep transformer models
for machine translation. CoRR, abs/1906.01787, 2019.

H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena. Self-attention generative adversarial
networks. CoRR, abs/1805.08318, 2018.

https://openai.com/blog/language-unsupervised/
https://blog.openai.com/better-language-models/

	Transformer self-training and fine-tuning for NLP
	Large Language Models
	Vision Transformers
	References

