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The most classical version of attention is a context-attention with a dot-product
for attention function, as used by Vaswani et al. (2017) for their transformer
models. We will come back to them.

Using the terminology of Graves et al. (2014), attention is an averaging of
values associated to keys matching a query. Hence the keys used for computing
attention and the values to average are different quantities.
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Given a query sequence Q ∈ RT×D , a key sequence K ∈ RT ′×D , and a value

sequence V ∈ RT ′×D′
, compute an attention matrix A ∈ RT×T ′

by matching

Qs to Ks, and weight V with it to get the result sequence Y ∈ RT×D′
.

∀i ,Ai = softmax

(
KQi√
D

)
Yi = V⊤Ai ,

or

A = softmaxrow

(
QK⊤
√
D

)
Y = AV .

The queries and keys have the same dimension D, and there are as many keys
T ′ as there are values. The result Y has as many rows T as there are queries,
and they are of same dimension D′ as the values.
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[Tensors are depicted here transposed for ease of representation.]

Ai = softmax

(
KQi√
D

)

Yi = V⊤Ai
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K

Q

V

·⊤ softmax A · Y

A = softmaxrow

(
QK⊤
√
D

)
Y = AV .

Standard attention
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It may be useful to mask the attention matrix, for instance in the case of
self-attention, for computational reasons, or to make the model causal for
auto-regression.
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|i − j | > ∆ ⇒ Ai,j = 0

(0)

keys
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Causal attention

j > i ⇒ Ai,j = 0
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Notes

In the case of local attention (Beltagy et al.,
2020), only keys stored near the query in the
sequence are considered:

|i − j| > ∆ ⇒ Ai,j = 0.

For causal attention (Vaswani et al., 2017), only
keys stored before the query in the sequence are
considered:

j > i ⇒ Ai,j = 0.



Attention layers

François Fleuret Deep learning / 13.2. Attention Mechanisms 6 / 30



A standard attention layer takes as input two sequences X and X ′ and computes the
tensors K , V , and Q as per-row linear functions.

Q = XWQ⊤

K = X ′WK⊤

V = X ′W V⊤

A = softmaxrow

(
QK⊤
√
D

)
Y = AV

X

Q K V

A

Y

X ′X

Q K V

A

Y

When X = X ′, this is self attention, otherwise it is cross attention.

Multi-head attention combines several such operations in parallel, and Y is the
concatenation of the results along the feature dimension to which is applied one more
linear transformation.

François Fleuret Deep learning / 13.2. Attention Mechanisms 7 / 30

Notes

The terminology of attention mechanism comes
from the paradigm of key-value dictionaries for
data storage in which objects (the values) are
stored using a key.
Querying the database consists of matching a
query with the keys of the database to retrieve
the values associated to them.
This is why matrices Q and K have the same
number of columns, that correspond to the di-
mension D of individual keys or queries because
we computes matches between them. The matri-
ces K and V have the same number of rows T ′

because each value is “indexed” by one key.
Each row Yj of the output corresponds to a
weighted average of the values modulated by
how much the query matched the associated key.



Given a permutation σ and a 2d tensor X , let us use the following notation for the
permutation of the rows: σ(X )i = Xσ(i).

The standard attention operation is invariant to a permutation of the keys and values:

Y (Q, σ(K), σ(V )) = Y (Q,K ,V ),

and equivariant to a permutation of the queries, that is the resulting tensor is
permuted similarly:

Y (σ(Q),K ,V ) = σ(Y (Q,K ,V )).

Consequently self attention and cross attention are equivariant to permutations of X ,
and cross attention is invariant to permutations of X ′.
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To illustrate the behavior of such an attention layer, we consider a toy
sequence-to-sequence problem with sequences composed of two triangular and two
rectangular patterns.

The target averages the heights in each pair of shapes.

Input Target

triangles triangles

rectangles rectangles
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Some training examples.

0 20 40 60 80 100

0

5

10

15

20

25

Input

Target

0 20 40 60 80 100

0

5

10

15

20

25

Input

Target

0 20 40 60 80 100

0

5

10

15

20

25

Input

Target

0 20 40 60 80 100

0

5

10

15

20

25

Input

Target

François Fleuret Deep learning / 13.2. Attention Mechanisms 10 / 30



We test first a 1d convolutional network, with no attention mechanism.

Sequential(
(0): Conv1d(1, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(1): ReLU()
(2): Conv1d(64, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(3): ReLU()
(4): Conv1d(64, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(5): ReLU()
(6): Conv1d(64, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(7): ReLU()
(8): Conv1d(64, 1, kernel_size=(5,), stride=(1,), padding=(2,))

)

nb_parameters 62337
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Notes

As a baseline, we consider a simple convolutional
network which takes as input the 1d sequence,
procss them with four hidden layers with 64 chan-
nels, and outputs a new 1d sequence.
Adequate padding preserves the length of the
sequence.



Training is done with the MSE loss and Adam.

batch_size = 100

optimizer = torch.optim.Adam(model.parameters(), lr = 1e-3)
mse_loss = nn.MSELoss()

mu, std = train_input.mean(), train_input.std()

for e in range(args.nb_epochs):

for input, targets in zip(train_input.split(batch_size),
train_targets.split(batch_size)):

output = model((input - mu) / std)
loss = mse_loss(output, targets)

optimizer.zero_grad()
loss.backward()
optimizer.step()
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Notes

With such a simple model and no attention, the
loss remains high. One epoch consists of 25,000
samples.
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Notes

These are example of test results, showing the
input in blue, and the generated sequences in
yellow.
The output is not that great, which is consistent
with the training loss remaining high, although
we can notice that the model sometimes pushes
towards the mean when the elements of a pair
are close.



The poor performance of this model is not surprising given its inability to transport
information from “far away” in the signal. Using more layers, global channel averaging,
or fully connected layers could possibly solve the problem.

However it is more natural to equip the model with the ability to combine information
from parts of the signal that it actively identifies as relevant.

This is exactly what an attention layer would do.
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We implement our own self attention layer with tensors N ×C ×T so that the products
by WQ , WK , and WV can be implemented as convolutions.

To compute QK⊤ and AV we need a batch matrix product, which is provided by
torch.matmul().
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>>> a = torch.rand(11, 9, 2, 3)
>>> b = torch.rand(11, 9, 3, 4)
>>> m = a.matmul(b)
>>> m.size()
torch.Size([11, 9, 2, 4])
>>>
>>> m[7, 1]
tensor([[0.8839, 1.0253, 0.7473, 1.1397],

[0.4966, 0.5515, 0.4631, 0.6616]])
>>> a[7, 1].mm(b[7, 1])
tensor([[0.8839, 1.0253, 0.7473, 1.1397],

[0.4966, 0.5515, 0.4631, 0.6616]])
>>>
>>> m[3, 0]
tensor([[0.6906, 0.7657, 0.9310, 0.7547],

[0.6259, 0.5570, 1.1012, 1.2319]])
>>> a[3, 0].mm(b[3, 0])
tensor([[0.6906, 0.7657, 0.9310, 0.7547],

[0.6259, 0.5570, 1.1012, 1.2319]])
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Notes

a can be interpreted as a 11 × 9 matrix of 2 × 3
matrices, and b as a 11 × 9 matrix of 3 × 4
matrices.
matmul loops over the first dimensions 11 × 9
to perform every time the product between the
matrices of size 2 × 3 and 3 × 4.
The overall operation results in a 11 × 9 matrix
of 2 × 4 matrices.



class SelfAttentionLayer(nn.Module):
def __init__(self, in_dim, out_dim, key_dim):

super().__init__()
self.conv_Q = nn.Conv1d(in_dim, key_dim, kernel_size = 1, bias = False)
self.conv_K = nn.Conv1d(in_dim, key_dim, kernel_size = 1, bias = False)
self.conv_V = nn.Conv1d(in_dim, out_dim, kernel_size = 1, bias = False)

def forward(self, x):
Q = self.conv_Q(x)
K = self.conv_K(x)
V = self.conv_V(x)
A = Q.transpose(1, 2).matmul(K).softmax(2)
y = A.matmul(V.transpose(1, 2)).transpose(1, 2)
return y

Note that for simplicity it is single-head attention, and the 1/
√
D is missing.

The computation of the attention matrix A and the layer’s output Y could also be
expressed somehow more clearly with Einstein summations (see lecture 1.5. “High
dimension tensors”) as

A = torch.einsum('nct,ncs->nts', Q, K).softmax(2)
y = torch.einsum('nts,ncs->nct', A, V)
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Notes

To link between the notations introduced earlier
and the current implementation, we have:

• X = X ′ for self attention,

• T = T ′ since the self attention has as
many queries as values,

• D = key_dim, and

• D′ = out_dim.

The forward function takes as input a batch of
size N × C × T , so that the products by WQ ,
WK , and WV are implemented with 1d convolu-
tions. Since the channel comes first per sample,
to compute the attention matrix A = QK⊤, we
transpose [the two last dimensions of] Q. And
similarly to compute AV , we need to transpose
[the two last dimensions of] V .



Sequential(
(0): Conv1d(1, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(1): ReLU()
(2): Conv1d(64, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(3): ReLU()
(4): SelfAttentionLayer(in_dim=64, out_dim=64, key_dim=64)
(5): Conv1d(64, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(6): ReLU()
(7): Conv1d(64, 1, kernel_size=(5,), stride=(1,), padding=(2,))

)

nb_parameters 54081
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Notes

We modify our convolutional baseline by replacing
the middle convolution layer and the following
ReLU with the attention layer we have imple-
mented. We choose for the key dimension the
same as for the values, that is the number of
channels.
Note that the resulting number of parameters is
slightly less that with the previous convolutional
network.
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Notes

The exact same training procedure yields much
better results with the attention layer, as the loss
goes down to zero.
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Notes

These are example results obtained with the at-
tention network, showing the input in blue, and
the generated sequences in yellow.
The network does what is it supposed to do.
We can see that the height of each pair is now
averaged properly.
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Notes

The images on the left are test sequences. Mark-
ers are placed at the indexes of the sequence cor-
responding to the shape centers: black squares
for the rectangles, and black triangles for trian-
gles.
The images on the right are the attention ma-
trices, with white standing for small coefficients
and black for large ones.
This shows that each pair of shapes attend at
each other. Rectangles put attention on the
boundary of their edges, and the triangles put
emphasis on their respective slopes.



!
Because it is invariant to a permutation of the keys and values, such an
attention layer disregards the absolute location of the values.

Our toy problem does not require to take into account the positioning in the tensor. We
can modify it with a target where the pairs to average are the two rightmost and
leftmost shapes.

Input Target

leftmost leftmost

rightmost rightmost
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Notes

To illustrate this drawback, we design a new
synthetic task in which the goal is to average
the heights of the two leftmost shapes with each
other, and the heights of the two rightmost with
each other.
Such a task still requires attention, because it
involves looking at features far away from one
another, but be able to take into account loca-
tions.



Some training examples.

0 20 40 60 80 100

0

5

10

15

20

25

Input

Target

0 20 40 60 80 100

0

5

10

15

20

25

Input

Target

0 20 40 60 80 100

0

5

10

15

20

25

Input

Target

0 20 40 60 80 100

0

5

10

15

20

25

Input

Target

François Fleuret Deep learning / 13.2. Attention Mechanisms 24 / 30



100 101 102

Nb. of epochs

0

500

1000

1500

2000

2500

M
S

E

With attention, no positional encoding

François Fleuret Deep learning / 13.2. Attention Mechanisms 25 / 30

Notes

Our attention model on this new task performs
almost as badly as the convolutional network on
the first task.
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The poor performance of this model is not surprising given its inability to take into
account positions in the attention layer.

We can fix this by providing to the model a positional encoding.

>>> len = 20
>>> c = math.ceil(math.log(len) / math.log(2.0))
>>> o = 2**torch.arange(c).unsqueeze(1)
>>> pe = (torch.arange(len).unsqueeze(0).div(o, rounding_mode = 'floor')) % 2
>>> pe
tensor([[0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1],

[0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1],
[0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]])

Such a tensor can simply be channel-concatenated to the input batch:

>>> pe = pe[None].float()
>>> input = torch.cat((input, pe.expand(input.size(0), -1, -1)), 1)
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Notes

The positional encoding aims at augmenting the
input tensor with a binary code which completely
determines the location in the sequence. With
a sequence of length 20, B = 5 channels suf-
fice: the first element is associated to code
(0, 0, 0, 0, 0), the second to (0, 0, 0, 0, 1), etc.
which are the binary encoding of the index.
A minibatch of N samples representing se-
quences of T elements of dimension D, is of
size N × D × T . After the positional encod-
ing is concatenated as channels to the dimen-
sion of the elements, the minibatch is of shape
N × (D + B) × T .
Other coding scheme exists, for instance using
trigonometric functions instead of a hard binary
encoding.
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Notes

The graph shows the training losses of our atten-
tion model with and without positional encoding.
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Notes

The images on the left are test sequences. Mark-
ers are placed at the indexes of the sequence cor-
responding to the shape centers: black squares
for the rectangles, and black triangles for trian-
gles.
The images on the right are the attention ma-
trices, with white standing for small coefficients
and black for large ones.
Although not as strong as in the previous task,
we can see that the attention is put on the first
two shapes jointly, and on the last two jointly.
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