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In all the operations we have seen, such as fully connected layers, convolutions,
or poolings, the contribution of a value in the input tensor to a value in the
output tensor is entirely driven by their [relative] locations [in the tensor].
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However some tasks involve more than hierarchical structures, e.g. translation:

“An apple that had been on the tree in the garden for weeks had
finally been picked up.”

“Une pomme qui était sur I'arbre du jardin depuis des semaines
avait finalement été ramassée.”

It has motivated the development of attention-based processing to transport
information from parts of the signal to other parts dynamically identified.
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Attention mechanisms aggregate features with an importance score that

e depends on the feature themselves, not on their positions in the tensor,

e relax locality constraints.

They modulate dynamically the weighting of different parts of a signal and allow
the representation and allocation of information channels to be dependent on
the activations themselves.

While they were developed to equip deep-learning models with memory-like
modules (Graves et al., 2014), their main use now is to provide long-term
dependency for sequence-to-sequence translation (Vaswani et al., 2017).
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Notes

The attention mechanism allows the information
to move from one part of the tensor to another
part far way.

For instance, in the case of sequence-to-sequence
translation, it is able to use an information from
early in the sentence to do a proper grammatical
decision later.

For images, it is able to combine information
from different parts of the image even if there
are far away.

It also allows the model to discard information
which is identified as irrelevant, and in particular
to decide it has a better use of the activations
that come in the latter parts of the model.
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Neural Turing Machine
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Graves et al. (2014) proposed to equip a deep model with an explicit memory to allow
for long-term storage and retrieval.

External Input External Output

NS

Controller

/N

Read Heads Write Heads

I l

(Graves et al., 2014)
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The said module has an hidden internal state that takes the form of a tensor
Mt c RNXM

where t is the time step, N is the number of entries in the memory and M is their
dimension.

A “controller” is implemented as a standard feed-forward or recurrent model and at
every iteration t it computes activations that modulate the reading / writing operations.

Francois Fleuret Deep learning / 13.1. Attention for Memory and Sequence Translation 6 /21



More formally, the memory module implements

e Reading, where given attention weights w; € R_’X, >, we(n) =1, it gets

N

re = Z we(n)M¢(n).

n=1

e Writing, where given attention weights w;, an erase vector e; € |0, 1]M and an add
vector a; € RM the memory is updated with

Vn, M¢(n) = Me—1(n)(1 — we(n)er) + we(n)as.

The controller has multiple “heads”, and computes at each t, for each writing head
Wt, €t, ar, and for each reading head w;, and gets back a read value r;.

Francois Fleuret Deep learning / 13.1. Attention for Memory and Sequence Translation 7/21



Frangois Fleuret

The vectors w; are themselves recurrent, and the controller can strengthen them on
certain key values, and/or shift them.
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Figure 2: Flow Diagram of the Addressing Mechanism. The key vector, ki, and key
strength, [3;, are used to perform content-based addressing of the memory matrix, M;. The
resulting content-based weighting is interpolated with the weighting from the previous time step
based on the value of the interpolation gate, g;. The shift weighting, s;, determines whether
and by how much the weighting is rotated. Finally, depending on ~;, the weighting is sharpened
and used for memory access.

(Graves et al., 2014)
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Results on the copy task
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Notes

The copy task consists of copying the content of a
sequence. The input consists of a “start” marker,
followed by the signal and the “end” marker,
after which the input is zero. The objective is
to produce an output composed of zeros until
the “end” marker, from which the model should
repeat what was before the “end” marker.

Here, the input is a sequence of 20 binary vectors
of dimension 8.

Although it is a toy task, it is difficult for stan-
dard recurrent neural nets, because it involves
memorizing the full signal.

The bottom image described by “time” on the
x-axis and “Location” on the y-axis depicts the
“write” weightings during a test sequence. The
model learned to shift the weightings during the
reading and to store in successive order the values
it got as input in order to read from there to
produce the proper output.



Results on the N-gram task
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Notes

An N-gram model aims at predicting a value given
the previous NN — 1 observed ones.

Here, the neural Turing machine should learn to
estimate the 32 empirical probabilities of the next
bit being 1 given the 5 previous bits.
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Figure 15: NTM Memory Use During the Dynamic N-Gram Task. The red and green
arrows indicate point where the same context is repeatedly observed during the test sequence
("00010" for the green arrows, “01111" for the red arrows). At each such point the same
location is accessed by the read head, and then, on the next time-step, accessed by the write
head. We postulate that the network uses the writes to keep count of the fraction of ones and
zeros following each context in the sequence so far. This is supported by the add vectors, which
are clearly anti-correlated at places where the input is one or zero, suggesting a distributed
“counter.” Note that the write weightings grow fainter as the same context is repeatedly seen;
this may be because the memory records a ratio of ones to zeros, rather than absolute counts.
The red box in the prediction sequence corresponds to the mistake at the first red arrow in
Figure 14; the controller appears to have accessed the wrong memory location, as the previous
context was “01101" and not “01111."
(Graves et al., 2014)
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Attention for seq2seq
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Given an input sequence xi, ..., xT, the standard approach for sequence- to-sequence
translation (Sutskever et al., 2014) uses a recurrent model

h: = f(Xt, ht—l)7
and considers that the final hidden state
v=ht
carries enough information to drive an auto-regressive generative model
e PV, Ye—1,v),

itself implemented with another RNN.
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The main weakness of such an approach is that all the information has to flow through

a single state v, whose capacity has to accommodate any situation.
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There are no direct “channels” to transport local information from the input sequence

to the place where it is useful in the resulting sequence.
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Notes
On the diagram, xi, . . ., xT is the input sequence,
for instance a sentence in German. y;,...,ys is
the output sequence, for instance a sentence in
English.

With a recurrent model, all the information flows
through a single state v, which is obtained after
visiting the full input sequence. Therefore, v
has to contain all the information required to
generate the yq, ..., ys.
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Attention mechanisms (Bahdanau et al., 2014) can transport information from parts of
the signal to other parts specified dynamically.
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Notes

This diagram illustrates the core idea of the at-
tention mechanism: there are direct flows of
information between parts of the sequence which
are dynamically identified from the activations.



Bahdanau et al. (2014) proposed to extend a standard recurrent model with such a
mechanism. They first run a bi-directionnal RNN to get a hidden state

hi=(h? k), i=1,...,T.

From this, they compute a new process s;, i = 1,..., T which looks at weighted
averages of the h;, where the weights are functions of the signal.
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Notes

The new process s; modulates all the hs based
on the signal itself to evaluate what are the hs
to take into account. As we will see later, s;
depends on a linear combination of the hs called
a context vector.



Given y1,...,yi_1 and s1,...,s;_1 first compute an attention
vJ, Qjj = SOftman a(s,-_l, hJ)

where a is a one hidden layer tanh MLP (this is “additive attention”, or
“concatenation”).

Then compute the context vector from the hs

T
Ci = E O_/,'th.
j=1
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The model can now make the prediction

si = f(si—1,Yi—1,¢i)

yi~ g()/if175f7cl')

where f is a GRU (Cho et al., 2014).

This is context attention where s;_; modulates what to look at in hy,..., ht to
compute s; and sample y;.
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Notes

On the diagram, the first two outputs y;, y» and
the hidden states s;, s, have already been com-
puted, and what is depicted is the process to
sample y3.

The sequence xi, ..., xT is the input (e.g. sen-
tence in German, where the x would be the em-
bedding vectors of the words).

The RNN is bi-directionnal with hidden states

hi,...,hT.
The hidden state s, is used to obtain the a3 ;, i =
1,..., T, that is how much each of the hidden

states should be weighted at iteration 3, which
produces the context vector c3. The thickness
of the lines between the as and c3 depicts the
importance of the different positions in the se-
quences, as estimated by the as.

Then, the current hidden state s; is computed
given the context vector c3, the previous hidden
state sp, and the last produced word y».

And finally, given the new hidden state s3, the
previous produced word y», and the current con-
text vector c3, a new token y3 is generated.
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Figure 2: The BLEU scores
of the generated translations
on the test set with respect
: : to the lengths of the sen-
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""" RNNsearch-30 | : . : , the full test set which in-
5 = - BNNenc:50 : e cludes sentences having un-
--- RNNenc30 | : : ST known words to the models.

0 1 I L Il
=

10 20 30 40 50 60
Sentence length

BLEU score

(Bahdanau et al., 2014)
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(Bahdanau et al., 2014)
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Notes

What is satisfying is that the weighting process
can easily be interpreted.

We can look at the as, that is the weight put at
each timestep (i.e. index t) to produce the given
output.

On the plots, the x-axis is the input sentence
while on the y-axis lays the generated sequence.
Each row / represents the «; ; to produce token
i in the output sequence. Black stands for small
importance («; ; >~ 0) and white for great impor-
tance (o ; >~ 1).

In particular, on figure (b), to generate “ 1" ",
the attention was put on “the” and on “envi-
ronment”, because both the determiner and the
noun are needed to translated the former.
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