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A popular approach to learn high-dimension densities are the Generative
Adversarial Networks proposed by Goodfellow et al. (2014), where two
networks are trained jointly:

• A discriminator D to classify samples as “real” or “fake”,

• a generator G to map a [simple] fixed distribution to samples that fool D.

“real”
sample D

Z

G
“fake”

D

What D wants

The approach is adversarial since the two networks have antagonistic objectives.
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Notes

The role of the discriminator is to detect if a
sample is from the real world or was generated.
The role of the generator is to produce realistic
samples: given some random noise following a
fixed and simple distribution, it should produce
samples which are realistic in the sense that they
fool the discriminator.
So these two models have an opposite objec-
tive: the discriminator is optimized to minimize
a standard classification loss, and the generator
is optimized to maximize that loss.
A key point is that the generator maximize that
loss through the discriminator. Hence the back-
ward pass will propagate the gradient of the loss
through the discriminator to the generator, and
the generator will be constantly updated during
training to remove any statistical structure that
was picked up by the discriminator as specific to
the synthetic samples.



Let 𝒳 be the signal space, and D the latent space dimension.

• The generator
G : RD → 𝒳

is trained so that [ideally] if it gets a random normal-distributed Z as input, it
produces a sample following the data distribution as output.

• The discriminator
D : 𝒳 → [0, 1]

is trained so that if it gets a sample as input, it predicts if it comes from G or from
the real data.
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Notes

In what follows, the generator takes as input a
random sample following a normal distribution,
but another choice is possible.
The discriminator gets as input a sample in 𝒳 and
computes an estimate of the posterior probability
for it to be “real.”



Given a set of “real points”

xn ∼ µ, n = 1, . . . ,N,

and if G is fixed, we can train D by generating

zn ∼ 𝒩 (0, I ), n = 1, . . . ,N,

building a two-class data-set

𝒟 =
{
(x1, 1), . . . , (xN , 1)︸ ︷︷ ︸

real samples∼µ

, (G(z1), 0), . . . , (G(zN), 0)︸ ︷︷ ︸
fake samples∼µG

}
,

where µ is the true data distribution, and µG is the distribution of G(Z) with
Z ∼ 𝒩 (0, I ), and minimizing the binary cross-entropy

ℒ (D) = −
1

2N

(
N∑

n=1

logD(xn) +
N∑

n=1

log(1−D(G(zn)))

)

= −
1

2

(
ÊX∼µ

[
logD(X )

]
+ ÊX∼µG

[
log(1−D(X ))

])
.
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The situation is slightly more complicated since we also want to optimize G to maximize
D’s loss.

Goodfellow et al. (2014) provide an analysis of the resulting equilibrium of that strategy.
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Let’s define the loss of G

ℒG(D,G) = EX∼µ

[
logD(X )

]
+ EX∼µG

[
log(1−D(X ))

]
which is high if D is doing a good job (low cross entropy), and low if G fools D.

Our ultimate goal is a G∗ that fools any D, so

G∗ = argmin
G

max
D

ℒG(D,G).
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If we define the optimal discriminator for a given generator

D∗
G = argmax

D
ℒG(D,G),

our objective becomes
G∗ = argmin

G
ℒG(D

∗
G,G),

that is:

Find a G whose loss against its best adversary D∗
G is low.
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We have

ℒG(D,G) = EX∼µ

[
logD(X )

]
+ EX∼µG

[
log(1−D(X ))

]
=

∫
x
µ(x) logD(x) + µG(x) log(1−D(x))dx .

Since

argmax
d

µ(x) log d + µG(x) log(1− d) =
µ(x)

µ(x) + µG(x)
,

and
D∗

G = argmax
D

ℒG(D,G),

if there is no regularization on D, we get

∀x , D∗
G(x) =

µ(x)

µ(x) + µG(x)
.
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So, since

∀x , D∗
G(x) =

µ(x)

µ(x) + µG(x)
.

we get

ℒG(D
∗
G,G) = EX∼µ

[
logD∗

G(X )
]
+ EX∼µG

[
log(1−D∗

G(X ))
]

= EX∼µ

[
log

µ(X )

µ(X ) + µG(X )

]
+ EX∼µG

[
log

µG(X )

µ(X ) + µG(X )

]
= DKL

(
µ

∥∥∥∥ µ+ µG

2

)
+DKL

(
µG

∥∥∥∥ µ+ µG

2

)
− log 4

= 2DJS (µ, µG)− log 4

where DJS is the Jensen-Shannon Divergence, a standard similarity measure between
distributions.
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Notes

We show here that a low value of ℒG(D
∗
G,G),

which is the quantity that the generator aims
at minimizing, corresponds to a low value of
the Jensen-Shannon divergence between the true
distribution and the one of the generated samples.
Hence the generator is optimized to minimize
this divergence, so to make the two distributions
similar.
Intuitively, if a generator is good against all dis-
criminators, it cannot have at any points x a
probability density different from the true data
density. If an x is more likely under µ than under
µG, then a discriminator could do slightly better
than random in predicting x to be real, and vice-
versa.



To recap: if there is no capacity limitation for D, and if we define

ℒG(D,G) = EX∼µ

[
logD(X )

]
+ EX∼µG

[
log(1−D(X ))

]
,

computing
G∗ = argmin

G
max
D

ℒG(D,G)

amounts to compute
G∗ = argmin

G
DJS(µ, µG),

where DJS is a reasonable similarity measure between distributions.

!
Although this derivation provides a nice formal framework, in practice D
is not “fully” optimized to [come close to] D∗

G when optimizing G.

In the toy example that follows, we alternate gradient steps to improve G and D.
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For our example, we take D = 8, and 𝒳 = R2.

z_dim = 8
nb_hidden = 100

model_G = nn.Sequential(nn.Linear(z_dim, nb_hidden),
nn.ReLU(),
nn.Linear(nb_hidden, 2))

model_D = nn.Sequential(nn.Linear(2, nb_hidden),
nn.ReLU(),
nn.Linear(nb_hidden, 1),
nn.Sigmoid())
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batch_size, lr = 10, 1e-3

optimizer_G = optim.Adam(model_G.parameters(), lr = lr)
optimizer_D = optim.Adam(model_D.parameters(), lr = lr)

for e in range(nb_epochs):

for t, real_batch in enumerate(real_samples.split(batch_size)):
z = real_batch.new(real_batch.size(0), z_dim).normal_()
fake_batch = model_G(z)

D_scores_on_real = model_D(real_batch)
D_scores_on_fake = model_D(fake_batch)

if t%2 == 0:
loss = (1 - D_scores_on_fake).log().mean()
optimizer_G.zero_grad()
loss.backward()
optimizer_G.step()

else:
loss = - (1 - D_scores_on_fake).log().mean() \

- D_scores_on_real.log().mean()
optimizer_D.zero_grad()
loss.backward()
optimizer_D.step()
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Notes

For even batches, the loss is only computed on
the fake samples to optimize the generator, and
D_scores_on_real is not used. For odd batches,
the loss is computed on all samples to optimize
the discriminator.
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Notes

Each row correspond to a dimension of the input
to the generator, and each column to a synthetic
2d distribution. The blues points are sampled
according to the real distribution, and the red
points are generated with the trained generator.
A synthetic point is generated by sampling from
a Gaussian distribution, and passing it to the
generator to produce a point in R2.
We can see that when the dimension of the space
the generator operates on is higher, the resulting
distribution is closer to the real one.
The last example (far right) is more difficult be-
cause there is a discontinuity in the target distri-
bution.



In more realistic settings, the fake samples may be initially so “unrealistic” that the
response of D saturates. That causes the loss for G

ÊX∼µG

[
log(1−D(X ))

]
to be far in the exponential tail of D’s sigmoid, and have zero gradient since
log(1 + ϵ) ≃ ϵ does not correct it in any way.

Goodfellow et al. suggest to replace this term with a non-saturating cost

−ÊX∼µG

[
log(D(X ))

]
so that the log fixes D’s exponential behavior. The resulting optimization problem has
the same optima as the original one.

! The loss for D remains unchanged.
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Model MNIST TFD
DBN [3] 138± 2 1909± 66

Stacked CAE [3] 121± 1.6 2110± 50
Deep GSN [6] 214± 1.1 1890± 29

Adversarial nets 225± 2 2057± 26

Table 1: Parzen window-based log-likelihood estimates. The reported numbers on MNIST are the mean log-
likelihood of samples on test set, with the standard error of the mean computed across examples. On TFD, we
computed the standard error across folds of the dataset, with a different σ chosen using the validation set of
each fold. On TFD, σ was cross validated on each fold and mean log-likelihood on each fold were computed.
For MNIST we compare against other models of the real-valued (rather than binary) version of dataset.

of the Gaussians was obtained by cross validation on the validation set. This procedure was intro-
duced in Breuleux et al. [8] and used for various generative models for which the exact likelihood
is not tractable [25, 3, 5]. Results are reported in Table 1. This method of estimating the likelihood
has somewhat high variance and does not perform well in high dimensional spaces but it is the best
method available to our knowledge. Advances in generative models that can sample but not estimate
likelihood directly motivate further research into how to evaluate such models.

In Figures 2 and 3 we show samples drawn from the generator net after training. While we make no
claim that these samples are better than samples generated by existing methods, we believe that these
samples are at least competitive with the better generative models in the literature and highlight the
potential of the adversarial framework.

a) b)

c) d)

Figure 2: Visualization of samples from the model. Rightmost column shows the nearest training example of
the neighboring sample, in order to demonstrate that the model has not memorized the training set. Samples
are fair random draws, not cherry-picked. Unlike most other visualizations of deep generative models, these
images show actual samples from the model distributions, not conditional means given samples of hidden units.
Moreover, these samples are uncorrelated because the sampling process does not depend on Markov chain
mixing. a) MNIST b) TFD c) CIFAR-10 (fully connected model) d) CIFAR-10 (convolutional discriminator
and “deconvolutional” generator)

6

(Goodfellow et al., 2014)
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Deep Convolutional GAN
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“We also encountered difficulties attempting to scale GANs using CNN
architectures commonly used in the supervised literature. However, after
extensive model exploration we identified a family of architectures that
resulted in stable training across a range of datasets and allowed for training
higher resolution and deeper generative models.”

(Radford et al., 2015)
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Radford et al. converged to the following rules:

• Replace pooling layers with strided convolutions in D and strided transposed
convolutions in G,

• use batchnorm in both D and G,

• remove fully connected hidden layers,

• use ReLU in G except for the output, which uses Tanh,

• use LeakyReLU activation in D for all layers.
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Under review as a conference paper at ICLR 2016

Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps.
A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called
deconvolutions) then convert this high level representation into a 64 × 64 pixel image. Notably, no
fully connected or pooling layers are used.

suggested value of 0.9 resulted in training oscillation and instability while reducing it to 0.5 helped
stabilize training.

4.1 LSUN

As visual quality of samples from generative image models has improved, concerns of over-fitting
and memorization of training samples have risen. To demonstrate how our model scales with more
data and higher resolution generation, we train a model on the LSUN bedrooms dataset containing
a little over 3 million training examples. Recent analysis has shown that there is a direct link be-
tween how fast models learn and their generalization performance (Hardt et al., 2015). We show
samples from one epoch of training (Fig.2), mimicking online learning, in addition to samples after
convergence (Fig.3), as an opportunity to demonstrate that our model is not producing high quality
samples via simply overfitting/memorizing training examples. No data augmentation was applied to
the images.

4.1.1 DEDUPLICATION

To further decrease the likelihood of the generator memorizing input examples (Fig.2) we perform a
simple image de-duplication process. We fit a 3072-128-3072 de-noising dropout regularized RELU
autoencoder on 32x32 downsampled center-crops of training examples. The resulting code layer
activations are then binarized via thresholding the ReLU activation which has been shown to be an
effective information preserving technique (Srivastava et al., 2014) and provides a convenient form
of semantic-hashing, allowing for linear time de-duplication . Visual inspection of hash collisions
showed high precision with an estimated false positive rate of less than 1 in 100. Additionally, the
technique detected and removed approximately 275,000 near duplicates, suggesting a high recall.

4.2 FACES

We scraped images containing human faces from random web image queries of peoples names. The
people names were acquired from dbpedia, with a criterion that they were born in the modern era.
This dataset has 3M images from 10K people. We run an OpenCV face detector on these images,
keeping the detections that are sufficiently high resolution, which gives us approximately 350,000
face boxes. We use these face boxes for training. No data augmentation was applied to the images.

4

(Radford et al., 2015)

We can have a look at the reference implementation provided in

https://github.com/pytorch/examples.git
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# default nz = 100, ngf = 64

class Generator(nn.Module):
def __init__(self, ngpu):

super().__init__()
self.ngpu = ngpu
self.main = nn.Sequential(

# input is Z, going into a convolution
nn.ConvTranspose2d( nz, ngf * 8, 4, 1, 0, bias=False),
nn.BatchNorm2d(ngf * 8),
nn.ReLU(True),
# state size. (ngf*8) x 4 x 4
nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 4),
nn.ReLU(True),
# state size. (ngf*4) x 8 x 8
nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 2),
nn.ReLU(True),
# state size. (ngf*2) x 16 x 16
nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf),
nn.ReLU(True),
# state size. (ngf) x 32 x 32
nn.ConvTranspose2d( ngf, nc, 4, 2, 1, bias=False),
nn.Tanh()
# state size. (nc) x 64 x 64

)
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# default nz = 100, ndf = 64

class Discriminator(nn.Module):
def __init__(self, ngpu):

super().__init__()
self.ngpu = ngpu
self.main = nn.Sequential(

# input is (nc) x 64 x 64
nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf) x 32 x 32
nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 2),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf*2) x 16 x 16
nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 4),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf*4) x 8 x 8
nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 8),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf*8) x 4 x 4
nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),
nn.Sigmoid()

)
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# custom weights initialization called on netG and netD
def weights_init(m):

classname = m.__class__.__name__
if classname.find('Conv') != -1:

m.weight.data.normal_(0.0, 0.02)
elif classname.find('BatchNorm') != -1:

m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)

criterion = nn.BCELoss()

fixed_noise = torch.randn(opt.batchSize, nz, 1, 1, device=device)
real_label = 1
fake_label = 0

# setup optimizer
optimizerD = optim.Adam(netD.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
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############################
# (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
###########################
# train with real
netD.zero_grad()
real_cpu = data[0].to(device)
batch_size = real_cpu.size(0)
label = torch.full((batch_size,), real_label, device=device)

output = netD(real_cpu)
errD_real = criterion(output, label)
errD_real.backward()
D_x = output.mean().item()

# train with fake
noise = torch.randn(batch_size, nz, 1, 1, device=device)
fake = netG(noise)
label.fill_(fake_label)
output = netD(fake.detach())
errD_fake = criterion(output, label)
errD_fake.backward()
D_G_z1 = output.mean().item()
errD = errD_real + errD_fake
optimizerD.step()
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############################
# (2) Update G network: maximize log(D(G(z)))
###########################
netG.zero_grad()
label.fill_(real_label) # fake labels are real for generator cost
output = netD(fake)
errG = criterion(output, label)
errG.backward()
D_G_z2 = output.mean().item()
optimizerG.step()

Note that this update implements the − log(D(G(z))) trick.
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Real images from LSUN’s “bedroom” class.
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Fake images after 1 epoch (3M images)

François Fleuret Deep learning / 11.1. Generative Adversarial Networks 25 / 30

Notes

The images shown here were generated with the
reference code and with the Z kept unchanged
across epochs: at each epoch, for visualization
purposes, the generator takes as input the very
same random values.
What is interesting to notice is that the overall
semantic of the images is kept: location of win-
dows, main colors, etc.



Fake images after 20 epochs
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Training a standard GAN often results in two pathological behaviors:

• Oscillations without convergence. Contrary to standard loss minimization, we have
no guarantee here that it will actually decrease.

• The infamous “mode collapse”, when G models very well a small sub-population,
concentrating on a few modes.

Additionally, performance is hard to assess. Two standard measures are the Inception
Score (Salimans et al., 2016) and the Fréchet Inception Distance (Heusel et al., 2017),
but assessment is often a “beauty contest”.
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Notes

The Inception Score checks that when gener-
ated images are classified by an inception model
(Szegedy et al., 2015) the estimated posterior
distribution of classes is similar to the real class
distribution, which in particular penalizes a miss-
ing class.
The Fréchet Inception Distance looks at the dis-
tributions of the features in one of the feature
maps of the inception model, for the real and
synthetic samples, and estimate their similarity
under a Gaussian model.



(Brock et al., 2018)
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(Brock et al., 2018)
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Notes

To make sure that the generator did not learn
by heart the training set, Brock et al. compare
a generated sample (top left) with “its closest
ones” in the training set.



(Karras et al., 2018)
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