
Deep learning

1.1. From neural networks to deep learning

François Fleuret

https://fleuret.org/dlc/

https://fleuret.org/dlc/

Many applications require the automatic extraction of “refined” information
from raw signal (e.g. image recognition, automatic speech processing, natural
language processing, robotic control, geometry reconstruction).

(ImageNet)

François Fleuret Deep learning / 1.1. From neural networks to deep learning 1 / 18

Notes

The core idea of machine learning is to write algo-
rithms that depend on parameters whose values
are let unspecified, and optimized to work on
examples.
When the number of parameters is very large
and the type of computation carefully chosen,
these methods can “discover” rich and complex
processings that would have been impossible to
handcraft.
Although there are multiple forms of machine-
learning models, most of them take as input a
real world signal and output a refined information:
semantic content (object classification), location

of object (detection), word present in a audio
signal (keyword spotting), meaning in a sentence
(sentiment analysis). Some algorithms even take
as input a random input to synthesis a structured
signal: image, sound or text.
The task of automatically extracting the informa-
tion of interest is difficult because of the large
variability of the input signal for a given task.
Despite being obvious to the human eye that all
the above images depict armchairs, it would be
very difficult to come up with a hand-crafted al-
gorithmic recipe taking as input the image pixels
and predicting they represent an armchair.

Our brain is so good at interpreting visual information that the “semantic gap”
is hard to assess intuitively.

This is a horse

François Fleuret Deep learning / 1.1. From neural networks to deep learning 2 / 18

Notes

When discussing the subject with people who are
not from the field, it is intriguing to them that
there is so much effort in making computers do
what humans do so easily. Very often people do
not realize that the problem actually exists.
The semantic gap is the difference there exists
between a raw signal and its semantic content.
For instance, two images can be very different in
terms of pixel values, although depicting the same
object. While it is even hard to be aware of the
processing happening in our visual cortex when
we look at an image such as the small vignette
of a horse above, the larger pixelated image is
slightly more difficult to parse since edges along
the animal are not apparent anymore, while artifi-
cial pixel edges are. When the image is split into
its three color component red/green/blue, that
correspond to the representation in memory, our
visual system has greater difficulty to understand
the signal.

>>> from torchvision.datasets import CIFAR10
>>> cifar = CIFAR10('./data/cifar10/', train=True, download=True)
Files already downloaded and verified
>>> x = torch.from_numpy(cifar.data)[43].permute(2, 0, 1)
>>> x[:, :4, :8]
tensor([[[99, 98, 100, 103, 105, 107, 108, 110],

[100, 100, 102, 105, 107, 109, 110, 112],
[104, 104, 106, 109, 111, 112, 114, 116],
[109, 109, 111, 113, 116, 117, 118, 120]],

[[166, 165, 167, 169, 171, 172, 173, 175],
[166, 164, 167, 169, 169, 171, 172, 174],
[169, 167, 170, 171, 171, 173, 174, 176],
[170, 169, 172, 173, 175, 176, 177, 178]],

[[198, 196, 199, 200, 200, 202, 203, 204],
[195, 194, 197, 197, 197, 199, 200, 201],
[197, 195, 198, 198, 198, 199, 201, 202],
[197, 196, 199, 198, 198, 199, 200, 201]]], dtype=torch.uint8)

François Fleuret Deep learning / 1.1. From neural networks to deep learning 3 / 18

Notes

In the memory of the computer, images are
stored as tensors, which are multi-dimensional
data structures storing the pixel values.
Tensors are truly what algorithms have access to
operate on and solve the task they are trained
for.
So an “image recognition” algorithms should pre-
dict that there is a horse in the input image from
this table of integers.

Extracting semantic automatically requires models of extreme complexity, which cannot
be designed by hand.

Techniques used in practice consist of

1. defining a parametric model, and

2. optimizing its parameters by “making it work” on training data.

This is similar to biological systems for which the model (e.g. brain structure) is
DNA-encoded, and parameters (e.g. synaptic weights) are tuned through experiences.

Deep learning encompasses software technologies to scale-up to billions of model
parameters and as many training examples.

François Fleuret Deep learning / 1.1. From neural networks to deep learning 4 / 18

Notes

In some very controlled environments such as
in an automatic factory assembly line, it may
sometimes be possible to design models by hand,
but in most real-world vision problems images
are prone to many variations due to illumination,
geometric pose, occlusion, texture, articulated
bodies, etc. which makes it impossible to design a
model by hand to extract their semantic content.
The standard way of addressing the task of ex-
tracting a “refined” information from a high di-
mensional input signal consists of designing an
algorithm with a lot of free parameters, that is
known, for theoretical reasons, or by experience
to compute the proper responses for adequate
values of the parameters. These values are then
optimized by a procedure on available training
examples.
This process of designing a system whose pa-
rameters are changed to make it better at a
task shares similarities with biological nervous
systems, whose structure is fixed (DNA-encoded),
but whose processing is modulated by quantities
(synaptic weights) that are tuned through experi-
ences.

There are strong connections between standard statistical modeling and machine
learning.

Classical ML methods combine a “learnable” model from statistics (e.g. “linear
regression”) with prior knowledge in pre-processing.

“Artificial neural networks” pre-dated these approaches, and do not follow this
dichotomy. They consist of “deep” stacks of parametrized processing.

François Fleuret Deep learning / 1.1. From neural networks to deep learning 5 / 18

Notes

Most of standard statistical methods (e.g. logis-
tic regression, linear regression) do not allow to
deal with signals of very high dimensions such as
images.
Therefore, we usually combine them with a hand
designed pre-processing step which extracts a
small number of meaningful quantities from the
raw signal. Hopefully, this pre-processing step
retains all the information content useful to make
the prediction.
Classical machine learning methods follow this
dichotomy of

• first, processing the signal to extract

features in a ad-hoc manner,

• second, feeding these features to a
statistical processing that makes a
prediction, and can be tuned to work on
training examples.

as opposed to artificial neural networks, which
are series of parametrized processing units, each
of them extracting meaningful values and making
predictions at the same time.
The term “deep” in “deep learning” refers to
the fact that many of these modules are stacked
together.

From artificial neural networks to “Deep Learning”

François Fleuret Deep learning / 1.1. From neural networks to deep learning 6 / 18

Networks of “Threshold Logic Unit”

130 LOGICAL CALCULUS FOR NERVOUS ACTIVITY

b

e ~ ~

9

h

F I G ~ E 1

d

f

(McCulloch and Pitts, 1943)

François Fleuret Deep learning / 1.1. From neural networks to deep learning 7 / 18

Notes

We can trace back the origins of neural networks
to McCulloch and Pitts (1943) who proposed
to model the nervous system as a network of
“threshold logic units.” They suggested that one
can put all the intelligence in the connections:
elementary units doing very simple computation
can perform an arbitrary mathematical function
by being combined in an appropriate manner.
This opened the way to the notion that one can
have a class of processing methods which are
parameterized through the connections between
units.

Frank Rosenblatt working on the Mark I perceptron (1956)

1949 – Donald Hebb proposes the Hebbian Learning principle (Hebb, 1949).

1951 – Marvin Minsky creates the first ANN (Hebbian learning, 40 neurons).

1958 – Frank Rosenblatt creates a perceptron to classify 20× 20 images.

1959 – David H. Hubel and Torsten Wiesel demonstrate orientation selectivity and
columnar organization in the cat’s visual cortex (Hubel and Wiesel, 1962).

1982 – Paul Werbos proposes back-propagation for ANNs (Werbos, 1981).

François Fleuret Deep learning / 1.1. From neural networks to deep learning 8 / 18

Notes

The Hebbian Learning principle is a simple rule
that allows to learn patterns and decision rules
by reinforcing the connections between neurons
when they tend to activate simultaneously. Al-
though biologically plausible it is not used nowa-
days in machine learning.
A perceptron is the simplest form of neural net-
work, composed of a single neuron.
Hubel and Wiesel’s studies of the visual cortex
of a cat showed that the visual information goes
through a series of several processing steps: edge
detections, combination of edges, detection of
motion of edges, etc. These results built a strong
bridge between the neural processing and the
mathematical world, in particular signal process-
ing.
The key component of deep learning is the back-
propagation algorithm which was proposed by
Werbos. Back-propagation is used to train neural
networks and is a straight-forward application of
the chain rule from differential calculus.

Neocognitron

195

visuo[oreo 9l< QSsOCiQtion o r e o - -

lower-order --,. higher-order .-,. ~ .grandmother
retino - - , - L G B --,. simple ~ complex --,. hypercomplex hypercomplex " - - cell '~

F- 3 I-- l r
I I I I 11

Uo ', ~' Usl -----> Ucl t~-~i Us2~ Uc2 ~ Us3----* Uc3 T
[I L ~ L J

Fig. 1. Correspondence between the hierarchy model by Hubel and Wiesel, and the neural network of the neocognitron

shifted in parallel from cell to cell. Hence, all the cells in
a single cell-plane have receptive fields of the same
function, but at different positions.

We will use notations Us~(k~,n) to represent the
output of an S-cell in the kr th S-plane in the l-th
module, and Ucl(k~, n) to represent the output of a C-cell
in the kr th C-plane in that module, where n is the two-
dimensional co-ordinates representing the position of
these cell's receptive fields in the input layer.

Figure 2 is a schematic diagram illustrating the
interconnections between layers. Each tetragon drawn
with heavy lines represents an S-plane or a C-plane,
and each vertical tetragon drawn with thin lines, in
which S-planes or C-planes are enclosed, represents an
S-layer or a C-layer.

In Fig. 2, a cell of each layer receives afferent
connections from the cells within the area enclosed by
the elipse in its preceding layer. To be exact, as for the
S-cells, the elipses in Fig. 2 does not show the connect-
ing area but the connectable area to the S-cells. That is,
all the interconnections coming from the elipses are
not always formed, because the synaptic connections
incoming to the S-cells have plasticity.

In Fig. 2, for the sake of simplicity of the figure,
only one cell is shown in each cell-plane. In fact, all the
cells in a cell-plane have input synapses of the same
spatial distribution as shown in Fig. 3, and only the
positions of the presynaptic cells are shifted in parallel
from cell to cell.

R3 ~I

modifioble synapses

) unmodifiable synopses

Since the cells in the network are interconnected in
a cascade as shown in Fig. 2, the deeper the layer is, the
larger becomes the receptive field of each cell of that
layer. The density of the cells in each cell-plane is so
determined as to decrease in accordance with the
increase of the size of the receptive fields. Hence, the
total number of the cells in each cell-plane decreases
with the depth of the cell-plane in the network. In the
last module, the receptive field of each C-cell becomes
so large as to cover the whole area of input layer U0,
and each C-plane is so determined as to have only one
C-cell.

The S-cells and C-cells are excitatory cells. That is,
all the efferent synapses from these cells are excitatory.
Although it is not shown in Fig. 2, we also have

Fig. 3. Illustration showing the input interconnections to the cells
within a single cell-plane

Fig. 2. Schematic diagram illustrating the
interconnections between layers in the
neocognitron

(Fukushima, 1980)

This model follows Hubel and Wiesel’s results.

François Fleuret Deep learning / 1.1. From neural networks to deep learning 9 / 18

Notes

Fukushima (1980) implemented the results of
Hubel and Wiesel in a model called the Neocog-
nitron. It was used for handwritten character
recognition and can be viewed as the precursor
of modern convolution networks.

Network for the T-C problem

Trained with back-prop.

(Rumelhart et al., 1988)

François Fleuret Deep learning / 1.1. From neural networks to deep learning 10 / 18

Notes

Rumelhart et al. (1988) used back-propagation
to train a network similar to the Neocognitron,
and showed that the so-called “hidden” units,
which are neither input nor output neurons, learn
meaningful representation of the data.

LeNet family

(LeCun et al., 1989)

François Fleuret Deep learning / 1.1. From neural networks to deep learning 11 / 18

Notes

LeCun et al. (1989) proposed a convolution neural
network (CNN, or “convnet”) very similar to
modern architectures used nowadays.
As we shall see later on, a convnet is a series
of “layers” which compute at every location of
their input matching scores with small templates,
and propagate the said matching scores to the
next layer. These templates are optimized with
variants of the back-propagation algorithm.

ImageNet Large Scale Visual Recognition Challenge.

Started 2010, 1 million images, 1000 categories

(http://image-net.org/challenges/LSVRC/2014/browse-synsets)

François Fleuret Deep learning / 1.1. From neural networks to deep learning 12 / 18

Notes

The availability of large amount of training data
is critical to the success of deep-learning meth-
ods. ImageNet was started precisely to fullfill the
need of machine learning, and the subset used to
benchmark models is composed of more than a
million of images organized in 1000 categories as
diverse as “angora rabbit”, “German shepherd”,
“acoustic guitar”, or “school bus”.
ImageNet was key in the development of deep
learning because it is of the size required to train
deep architectures.
Most image classification models are trained on
this dataset, which is split in three parts: the
training set, the validation (or dev) set, and the
test set. The overall goal is to train a model
on the training data, tune the hyper-parameters
on the validation set, and finally evaluate the

performance of the final model on the test set.
The testing part consists in:

• applying the model on each test image:
the model returns a value between 0 and
999, corresponding to the class the model
believes the image belongs to;

• then counting how many times the
prediction of the model is right.

There are variants as well, such as the top-5 error
rate, which is considering the prediction correct
if the correct class is among the 5 first classes
predicted by the network.
It is also common practice for many computer
vision tasks, to start from a network that was
trained on ImageNet, and to refine its training
on another task and/or extend it.

AlexNet

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5× 5× 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 × 3 ×
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 × 3 × 192 , and the fifth convolutional layer has 256
kernels of size 3× 3× 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224× 224 patches (and their horizontal reflections) from the
256×256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 × 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224× 224× 3-dimensional.

5

(Krizhevsky et al., 2012)

François Fleuret Deep learning / 1.1. From neural networks to deep learning 13 / 18

Notes

Following some earlier work from Cireşan et al.
(2011), the work of Krizhevsky et al. (2012)
showed that a network very similar to a LeNet5,
but of far greater size, implemented on a graphical
card could beat by a large margin state-of-the-art
image classification methods on what was the
reference benchmark of the community.
This work opened the way of training bigger net-
works on GPUs and started a new era of artificial
neural networks.

Top-5 error rate on ImageNet

2010 2011 2012 2013 2014 2015 2016 2017
0

10

20

30

40

50

60

E
rr

or

Human performance

(Gershgorn, 2017)

François Fleuret Deep learning / 1.1. From neural networks to deep learning 14 / 18

Notes

Each gray dot on this graph shows the error rate
of a model. The red line indicates the state-
of-the-art performance each year, and the blue
line shows the performance of humans asked to
make the prediction, which can be seen as a gold
standard.
A model may outperform humans if it picks sta-
tistical regularities that humans do not perceive,
probably because of a bias in the data set.

input

Conv
7x7+2(S)

MaxPool
3x3+2(S)

LocalRespNorm

Conv
1x1+1(V)

Conv
3x3+1(S)

LocalRespNorm

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

AveragePool
5x5+3(V)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

AveragePool
5x5+3(V)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

AveragePool
7x7+1(V)

FC

Conv
1x1+1(S)

FC

FC

SoftmaxActivation

softmax0

Conv
1x1+1(S)

FC

FC

SoftmaxActivation

softmax1

SoftmaxActivation

softmax2

Figure 3: GoogLeNet network with all the bells and whistles

7

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

3x3 conv, 512

3x3 conv, 64

3x3 conv, 64

pool, /2

3x3 conv, 128

3x3 conv, 128

pool, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

fc 4096

fc 4096

fc 1000

image

output

size: 112

output

size: 224

output

size: 56

output

size: 28

output

size: 14

output

size: 7

output

size: 1

VGG-19 34-layer plain

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

34-layer residual

Figure 3. Example network architectures for ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-
dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.

Residual Network. Based on the above plain network, we
insert shortcut connections (Fig. 3, right) which turn the
network into its counterpart residual version. The identity
shortcuts (Eqn.(1)) can be directly used when the input and
output are of the same dimensions (solid line shortcuts in
Fig. 3). When the dimensions increase (dotted line shortcuts
in Fig. 3), we consider two options: (A) The shortcut still
performs identity mapping, with extra zero entries padded
for increasing dimensions. This option introduces no extra
parameter; (B) The projection shortcut in Eqn.(2) is used to
match dimensions (done by 1×1 convolutions). For both
options, when the shortcuts go across feature maps of two
sizes, they are performed with a stride of 2.

3.4. Implementation

Our implementation for ImageNet follows the practice
in [21, 41]. The image is resized with its shorter side ran-
domly sampled in [256, 480] for scale augmentation [41].
A 224×224 crop is randomly sampled from an image or its
horizontal flip, with the per-pixel mean subtracted [21]. The
standard color augmentation in [21] is used. We adopt batch
normalization (BN) [16] right after each convolution and
before activation, following [16]. We initialize the weights
as in [13] and train all plain/residual nets from scratch. We
use SGD with a mini-batch size of 256. The learning rate
starts from 0.1 and is divided by 10 when the error plateaus,
and the models are trained for up to 60× 104 iterations. We
use a weight decay of 0.0001 and a momentum of 0.9. We
do not use dropout [14], following the practice in [16].

In testing, for comparison studies we adopt the standard
10-crop testing [21]. For best results, we adopt the fully-
convolutional form as in [41, 13], and average the scores
at multiple scales (images are resized such that the shorter
side is in {224, 256, 384, 480, 640}).

4. Experiments
4.1. ImageNet Classification

We evaluate our method on the ImageNet 2012 classifi-
cation dataset [36] that consists of 1000 classes. The models
are trained on the 1.28 million training images, and evalu-
ated on the 50k validation images. We also obtain a final
result on the 100k test images, reported by the test server.
We evaluate both top-1 and top-5 error rates.

Plain Networks. We first evaluate 18-layer and 34-layer
plain nets. The 34-layer plain net is in Fig. 3 (middle). The
18-layer plain net is of a similar form. See Table 1 for de-
tailed architectures.

The results in Table 2 show that the deeper 34-layer plain
net has higher validation error than the shallower 18-layer
plain net. To reveal the reasons, in Fig. 4 (left) we com-
pare their training/validation errors during the training pro-
cedure. We have observed the degradation problem - the

4

GoogleNet (Szegedy et al., 2015) ResNet (He et al., 2015)

François Fleuret Deep learning / 1.1. From neural networks to deep learning 15 / 18

Notes

Alexnet initiated a trend toward more complex
and bigger architectures.
GoogLeNet (Szegedy et al., 2015) contains sev-
eral “inception” modules in a kind of fractal struc-
ture.
Residual networks (He et al., 2015) allow very
deep networks thanks to “passthrough” connec-
tions which add the input of a layer to its output,
and facilitate the training.

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

(Vaswani et al., 2017)

François Fleuret Deep learning / 1.1. From neural networks to deep learning 16 / 18

Notes

The Transformers are a class of deep architectures
using attention-based computation, very popular
for Natural Language Processing (Vaswani et al.,
2017).
Some of these models for language modeling are
of extremely large size, e.g. GPT-3 having 175
billion parameters (Brown et al., 2020).

Deep learning is built on a natural generalization of a neural network: a graph of tensor
operators, taking advantage of

• the chain rule (aka “back-propagation”),

• stochastic gradient decent,

• convolutions,

• parallel operations on GPUs.

This does not differ much from networks from the 90s.

François Fleuret Deep learning / 1.1. From neural networks to deep learning 17 / 18

Notes

As we will see later in the course, an artificial
neural network is a series of layers of neurons,
each neuron connected to several neurons in the
previous layer and sending activations to neurons
that follow in the network.
Deep learning is “simply” a natural generalization
of artificial neural networks by viewing the activi-
ties of a group of neurons as a multidimensional
matrix, called a tensor.
A “deep model” can be formalized as a graph of
tensor operators in which

• the nodes of the graph are operations,

• the results of the operation are propagated
along the edges of the graph, until it
reaches the output node.

The four main elements of a the deep learning
technology are:

• the back-propagation which allows to
compute how the quantity to optimize will

change when changing slightly the model
parameters. This directly comes from the
chain rule from differential calculus;

• the stochastic gradient descent algorithm,
which is a recipe to iteratively update the
parameters of the network, until it fulfills
its tasks;

• the convolutions, which leverage the fact
that the signal is structured, and often has
some stationarity properties. Convolutions
allow the processing of large signals such
as image, videos, or chunks of text. In an
image for instance, it makes sense to use
the same filter detecting an edge
everywhere;

• the parallelization of operations to take
advantage of highly efficient computing
hardware (GPUs/TPUs).

This generalization allows to design complex networks of operators dealing with images,
sound, text, sequences, etc. and to train them end-to-end.

(Tran et al., 2020)

François Fleuret Deep learning / 1.1. From neural networks to deep learning 18 / 18

Notes

The paradigm of graph of operators allows to
design architectures at a new level, where sub-
modules themselves perform very complicated
operations.
The work of Tran et al. (2020) aims at doing auto
captioning from images, which is given an input
image should produce a piece of text describing
the content of it. The architecture they devised
illustrates the modularity of complex deep models,
and embeds for instance a full ResNet152 as a
sub-processing for the image part.

References

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark,
C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Language models are
few-shot learners. CoRR, abs/2005.14165, 2020.

D. C. Cireşan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmidhuber. Flexible, high
performance convolutional neural networks for image classification. In American Association for
Artificial Intelligence Conference, pages 1237–1242, 2011.

K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern
recognition unaffected by shift in position. Biological Cybernetics, 36(4):193–202, April 1980.

D. Gershgorn. The data that transformed AI research—and possibly the world, July 2017.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CoRR,
abs/1512.03385, 2015.

D. O. Hebb. The organization of behavior: A neuropsychological theory. Wiley, 1949. ISBN
0-8058-4300-0.

D. Hubel and T. Wiesel. Receptive fields, binocular interaction, and functional architecture in the
cat’s visual cortex. Journal of Physiology, 160:106–154, 1962.

A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural
networks. In Neural Information Processing Systems (NIPS), 2012.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.
Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4):
541–551, 1989.

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. The
bulletin of mathematical biophysics, 5(4):115–133, 1943.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Neurocomputing: Foundations of Research,
chapter Learning Representations by Back-propagating Errors, pages 696–699. MIT Press, 1988.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich. Going deeper with convolutions. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

A. Tran, A. Mathews, and L. Xie. Transform and tell: Entity-aware news image captioning. In
Conference on Computer Vision and Pattern Recognition (CVPR), pages 13035–13045, 2020.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. CoRR, abs/1706.03762, 2017.

P. J. Werbos. Applications of advances in nonlinear sensitivity analysis. In Proceedings of the 10th
IFIP Conference, pages 762–770, 1981.

	From artificial neural networks to ``Deep Learning''
	References

