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Vincent et al. (2010) interpret the autoencoder in a probabilistic framework as a
way of building an encoder that maximizes the mutual information between the
input and the latent state.
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Vincent et al. (2010) interpret the autoencoder in a probabilistic framework as a

way of building an encoder that maximizes the mutual information between the
input and the latent state.

Let X be a sample, Z = f(X; 0) its latent representation, and g(x, z) the
distribution of (X, Z).
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Vincent et al. (2010) interpret the autoencoder in a probabilistic framework as a
way of building an encoder that maximizes the mutual information between the
input and the latent state.

Let X be a sample, Z = f(X; 0) its latent representation, and g(x, z) the
distribution of (X, Z).

We have

argmax I(X,Z) = argmax H(X) — H(X | Z2)
0 0

=argmax —H(X | Z)
6
= argropax Eq(x,2) [Iog q(X | Z)]

However, there is no expression of g(X | Z) in any reasonable setup.
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Give (X, Z) ~ qg, for any distribution p we have

Eqx,2)[ 08 a(X | 2) | = Equx )| log p(X | 2) |-
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Give (X, Z) ~ qg, for any distribution p we have

Eqx,2)[ 08 a(X | 2) | = Equx )| log p(X | 2) |-

So we can in particular try to find a “good p”, so that the left term is a good
approximation of the right one.
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If we consider the following model for p
p(-1Z=2z)=n(g(zin),0)

where g is deterministic
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If we consider the following model for p

p(-|Z=2z)=x(g(zin),0)

where g is deterministic, we get

X —g(Z;n)|]?
Eq(X,Z)['OgP(X | Z)] = —Eqx,2) [%]
E I1X — g(F(X);n)lI?
“Box.2) | T2 |
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If we consider the following model for p

p(-|Z=2z)=N(g(zn),0)

where g is deterministic, we get

X —g(Z;n)|]?
Eq<x,2)['°gp(x | Z)] = —Eqx,2) [%]
& I1X — g(F(X);n)lI?
— T Hq(X,2) 252 :

If optimizing 1 makes the bound tight, the final loss is the reconstruction error

N
. 1 2
argmax I(X,Z) ~ argmin (mnm m > 10— g(F(xa)i )l > :

n=1

Francois Fleuret EE-550 — Deep learning / 9.3. Denoising and variational autoencoders 4/24



If we consider the following model for p

p(-1Z=2)=~(g(zn)0)

where g is deterministic, we get

X —g(Z:n)|?
Eq(X,Z)[Ing(X | Z)] = —Eqx,z) {%}
—_E X —g(f(X);n)|I>
= Boxo) | |-

If optimizing 1 makes the bound tight, the final loss is the reconstruction error

N
. o1 2
arg(r)nax I(X,Z) ~ arggmn (mnln N E [[xn — g(f(xn);m)|| ) .

n=1

This abstract view of the encoder as “maximizing information” justifies its
use to build generic encoding layers.
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In the perspective of building a good feature representation, just retaining
information is not enough, otherwise the identity would be a good choice.
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In the perspective of building a good feature representation, just retaining
information is not enough, otherwise the identity would be a good choice.

In their work, Vincent et al. propose to degrade the signal with noise before
feeding it to the encoder, but to keep the MSE to the original signal.

This makes the encoder retain information about structures beyond local noise.
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Figure 6: Weight decay vs. Gaussian noise. We show typical filtersti&am natural image
patches in the over-complete case (200 hidden unitsft: regular autoencoder with
weight decay. We tried a wide range of weight-decay values and learaieg: filters
never appeared to capture a more interesting structure than what is SleognNote
that some local blob detectors are recovered compared to using no weigy at all
(Figure 5 right).Right: a denoising autoencoder with additive Gaussian naise (.5)
learns Gabor-like local oriented edge detectors. Clearly the filters lagrmfualitatively
very different in the two cases.

(Vincent et al., 2010)
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Figure 7: Filters obtained on natural image patches by denoising aut@eassing other noise
types.Left: with 10% salt-and-pepper noise, we obtain oriented Gabor-like filtersy The
appear slightly less localized than when using Gaussian noise (contrastigitie 6
right). Right: with 55% zero-masking noise we obtain filters that look like oriented
gratings. For the three considered noise types, denoising trainingragipdearn filters
that capture meaningful natural image statistics structure.

(Vincent et al., 2010)
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Vincent et al. build deep MLPs whose layers are initialized successively as
encoders trained within a noisy autoencoder.
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encoders trained within a noisy autoencoder.
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Vincent et al. build deep MLPs whose layers are initialized successively as
encoders trained within a noisy autoencoder.
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Vincent et al. build deep MLPs whose layers are initialized successively as
encoders trained within a noisy autoencoder.
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Vincent et al. build deep MLPs whose layers are initialized successively as
encoders trained within a noisy autoencoder.

L

A final classifying layer is added and the full structure can be fine-tuned.
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Data Set SVMp¢ DBN-1 SAE-3 DBN-3 SDAE-3(v)
MNIST 1.40t023 | 1.2Lo21| 1.40:023 | 1.24t022 | 1.28+022(25%)
basic 3.03:t015 | 3.94:017 | 3.46t016 | 3.1L015 | 2.84:0.15(10%)
rot 11.1%t028 | 14.69-031 | 10.30:0.27 | 10.30:0.27 | 9.53:0.26 (25%)
bg-rand 14.58:031 | 9.80:026 | 11.28t0.28 | 6.73:0.22 | 10.3Q-0.27 (40%)
bg-img 22.6%037 | 16.15:032 | 23.00:0.37 | 16.3%032 | 16.68:0.33 (25%)
bg-img-rot | 55.18:044 | 52.2%-044 | 51.93t0.44 | 47.3%:044 | 43.76:-0.43 (25%)
rect 2.15:013 | 4.71t019 | 2.41+013| 2.60:014 | 1.99:0.12(10%)
rect-img 24.04:037 | 23.69:0.37 | 24.05:037 | 22.50:0.37 | 21.59:0.36 (25%)
convex 19.13t0.34 | 19.92:035 | 18.41:034 | 18.63:0.34 | 19.06:0.34 (10%)
tzanetakis | 14.4%218 | 18.0%131 | 16.15-1.95 | 18.38t164 | 16.02-1.04(0.05)
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Variational Autoencoders
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Coming back to generating a signal, instead of training an autoencoder and
modeling the distribution of Z, we can try an alternative approach:

Impose a distribution for Z and then train a decoder g so that g(Z) matches
the training data.
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We consider the following two distributions:

e g is the distribution on 2 x RY of a pair (X, Z) composed of a sample X
taken from the data distribution and the output of the encoder on it,
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We consider the following two distributions:

e g is the distribution on 2 x RY of a pair (X, Z) composed of a sample X
taken from the data distribution and the output of the encoder on it,

e pis the distribution on & x RY of a pair (X, Z) composed of an encoding
state Z ~ (0, 1) and the output of the decoder g on it.

We should ideally look for the g that maximizes the log-likelihood

% > log p(xn) = By(x) [ log p(X)]~
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We consider the following two distributions:

e g is the distribution on 2 x RY of a pair (X, Z) composed of a sample X
taken from the data distribution and the output of the encoder on it,

e pis the distribution on & x RY of a pair (X, Z) composed of an encoding
state Z ~ (0, 1) and the output of the decoder g on it.

We should ideally look for the g that maximizes the log-likelihood

% > log p(xn) = By(x) [ log p(X)]~

However, while we can sample z and compute g(z), we cannot compute
p(x) for a given x, and even less compute its derivatives.
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The Variational Autoencoder proposed by Kingma and Welling (2013) relies
on a tractable approximation of this log-likelihood.

Note that their framework involves stochastic encoder f, and decoder g, whose
outputs depend on both their inputs and additional randomness.
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Remember that g(X) is the data distribution, and g(Z | X = x) is the
distribution of the latent encoding 7(x). We want to maximize

Eqx) [log P(X)} .

or equivalently minimize

Eq(0) | log a(X) — log p(X)] = D (a(X) || p(X))
< DuL(a(X, 2) 1| p(X, 2).
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Remember that g(X) is the data distribution, and g(Z | X = x) is the
distribution of the latent encoding 7(x). We want to maximize

Eq(x) [log P(X)} )
or equivalently minimize

Eq(0) | log a(X) — log p(X)] = D (a(X) || p(X))
< DuL(a(X, 2) 1| p(X, 2).

We will minimize this latter bound, that can be rewritten as

Dicw(a(X, 2) | p(X, 2)) =
Equ0 [Diu(a(Z | X) 11 P(Z)) | = Eqix,2) | log p(X | 2)] + E(q(X).
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Kingma and Welling use Gaussians with diagonal covariance for both g(Z | X)
and p(X | Z):

o the encoder maps a data point from the signal space R€ to [the parameters
of] a Gaussian in the latent space R

f:RS - R¥

f f f f
X = (/“Llwuv/ldvo'lw":gd)?
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Francois Fleuret

Kingma and Welling use Gaussians with diagonal covariance for both g(Z | X)
and p(X | Z):

o the encoder maps a data point from the signal space R€ to [the parameters
of] a Gaussian in the latent space R
f: RS — R¥

f f f f
X = (/“Llwuv/ldvo'lw":gd)?

« the decoder maps a latent value from R to [the parameters of] a Gaussian
in the signal space R¢

g :RY = R

g g
z (/Ll,...,/l,g,(fl,...,(fg).
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We have to minimize

Z = By [Dr (@(Z | X) 11 p(2)) | = Egx ) log p(X | 2)].
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We have to minimize

Z = By [Dr (@(Z | X) 11 p(2)) | = Egx ) log p(X | 2)].

The first term is the average of

Dy (q(Z [ X =x) [ p(Z

I\JH—!

35 (1 2rogof — (wh0)” - (o569) 7).
d

over the xps.
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Francois Fleuret

We have to minimize

Z = By [Dr (@(Z | X) 11 p(2)) | = Egx ) log p(X | 2)].

The first term is the average of

Dy (q(Z [ X =x) || p(Z

I\JH—!

35 (1 2rogof — (wh0)” - (o569) 7).
d

over the xps.

The second term of & is the average of

1
—logp(X =x|Z=2)= EZ <Iog27‘r+2|ogad(2)+
d

(xg — ui(Z))2>
(o5(2))

over the x,, with one z, sampled for each (could be more)

Zn~ N (,uf(x,,), of(xn)> ,n=1,...,N.

EE-550 — Deep learning / 9.3. Denoising and variational autoencoders 16/ 24



— Latent space F

Original space &
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Regarding implementation: the encoder now maps to twice the number of
dimensions, which corresponds to the s and log ((O'f)2)S.
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Regarding implementation: the encoder now maps to twice the number of
dimensions, which corresponds to the s and log ((O'f)2)S.

Also, as in Kingma and Welling (2013), we use a fixed variance of 1 for the
decoder. So it outputs the p8s alone, and its dimension remains unchanged.
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The first term of the loss is the average of

D (o2 | X =) 1(2)) = =5 3 (14 2108 )0 — (450)” = (#400) 7).

d

over the x,.
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The first term of the loss is the average of

D (a(Z | X =) p(2) =3 3 (1 +2log o)) — ()" - (as(x))Q) .

d

over the x,.

This can be implemented as

param_f = model.encode (input)
mu_f, logvar_f = param_f.split(param_f.size(1)//2, 1)

kl = - 0.5 * (1 + logvar_f - mu_f.pow(2) - logvar_f.exp())
kl_loss = kl.sum() / input.size(0)
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Since we use a constant variance of 1 for the decoder, the second term of &
becomes the average of

1
—logp(X = x| Z =2) = 53 (xs — n§(2))* + cst
d

over the x,, with one z, sampled for each, i.e.

Zn~ N (,uf(x,,),of(x,,)> ,n=1,...,N.

Francois Fleuret EE-550 — Deep learning / 9.3. Denoising and variational autoencoders 20/ 24



Francois Fleuret

Since we use a constant variance of 1 for the decoder, the second term of &

becomes the average of

1
—logp(X =x|Z=2)= 5 Z(xd — p§(2))? + cst
d

over the x,, with one z, sampled for each, i.e.
20~ (W (xn), 0 (x0)) s n =1, NS
This can be implemented as

std_f = torch.exp(0.5 * logvar_f)
z = torch.empty_like(mu_f).normal_() * std_f + mu_f
output = model.decode(z)

fit = 0.5 * (output - input).pow(2)
fit_loss = fit.sum() / input.size(0)
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We had for the standard autoencoder

z = model.encode (input)
output = model.decode(z)
loss = 0.5 * (output - input).pow(2).sum() / input.size(0)
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We had for the standard autoencoder

z = model.encode (input)
output = model.decode(z)

loss = 0.5 * (output - input).pow(2).sum() / input.size(0)

and putting everything together we get for the VAE

param_f = model.encode(input)
mu_f, logvar_f = param_f.split(param_f.size(1)//2, 1)

kl = - 0.5 x (1 + logvar_f - mu_f.pow(2) - logvar_f.exp())

k1l_loss = kl.sum() / input.size(0)

std_f = torch.exp(0.5 * logvar_f)
z = torch.empty_like(mu_f).normal_() * std_f + mu_f
output = model.decode(z)

fit = 0.5 * (output - input).pow(2)
fit_loss = fit.sum() / input.size(0)

loss = kl_loss + fit_loss
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We had for the standard autoencoder

z = model.encode (input)
output = model.decode(z)
loss = 0.5 * (output - input).pow(2).sum() / input.size(0)

and putting everything together we get for the VAE

param_f = model.encode(input)
mu_f, logvar_f = param_f.split(param_f.size(1)//2, 1)

kl = - 0.5 x (1 + logvar_f - mu_f.pow(2) - logvar_f.exp())
k1l_loss = kl.sum() / input.size(0)

std_f = torch.exp(0.5 * logvar_f)
z = torch.empty_like(mu_f).normal_() * std_f + mu_f
output = model.decode(z)

fit = 0.5 * (output - input).pow(2)
fit_loss = fit.sum() / input.size(0)

loss = kl_loss + fit_loss

During inference we do not sample, and instead use ;. and ;€ as prediction.
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Original

721041 4a970606
901597%472605%
474013 \3472

Autoencoder reconstruction (d = 32

721064194495 920606
901597347605
4e740\V3\3472

~

Variational Autoencoder reconstruction (d = 32)

72106419495 9720K0
901 597%47260%¢5
40740\ 3 \3472



We can look at two latent features to check that they are Normal for the VAE.
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We can look at two latent features to check that they are Normal for the VAE.
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Autoencoder sampling (d = 32)

‘?t‘*‘-&'ﬁ IR S S Y
g v F?&Z?a"d}i
333&1?6{%45319

Variational Autoencoder sampling (d = 32)

| Ye€eBF Yy FfYyY&EZ G4
8049592494772
948 7ecvw902 75
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The end
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