EE-559 — Deep learning

9.3. Denoising and variational autoencoders

Francois Fleuret
https://fleuret.org/ee559/
Sat Dec 8 19:04:09 UTC 2018

(A

FelCI30

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Denoising Autoencoders

Francois Fleuret EE-550 — Deep learning / 9.3. Denoising and variational autoencoders 1/24

Vincent et al. (2010) interpret the autoencoder in a probabilistic framework as a
way of building an encoder that maximizes the mutual information between the
input and the latent state.

Francois Fleuret EE-559 — Deep learning / 9.3. Denoising and variational autoencoders 2/24

Vincent et al. (2010) interpret the autoencoder in a probabilistic framework as a

way of building an encoder that maximizes the mutual information between the
input and the latent state.

Let X be a sample, Z = f(X; 0) its latent representation, and g(x, z) the
distribution of (X, Z).

Francois Fleuret EE-559 — Deep learning / 9.3. Denoising and variational autoencoders 2/24

Vincent et al. (2010) interpret the autoencoder in a probabilistic framework as a
way of building an encoder that maximizes the mutual information between the
input and the latent state.

Let X be a sample, Z = f(X; 0) its latent representation, and g(x, z) the
distribution of (X, Z).

We have

argmax I(X,Z) = argmax H(X) — H(X | Z2)
0 0

=argmax —H(X | Z)
6
= argropax Eq(x,2) [Iog q(X | Z)]

However, there is no expression of g(X | Z) in any reasonable setup.

Francois Fleuret EE-550 — Deep learning / 9.3. Denoising and variational autoencoders 2/24

Give (X, Z) ~ qg, for any distribution p we have

Eqx,2)[08 a(X | 2) | = Equx)| log p(X | 2) |-

Francois Fleuret EE-550 — Deep learning / 9.3. Denoising and variational autoencoders 3/24

Give (X, Z) ~ qg, for any distribution p we have

Eqx,2)[08 a(X | 2) | = Equx)| log p(X | 2) |-

So we can in particular try to find a “good p”, so that the left term is a good
approximation of the right one.

Francois Fleuret EE-550 — Deep learning / 9.3. Denoising and variational autoencoders 3/24

If we consider the following model for p
p(-1Z=2z)=n(g(zin),0)

where g is deterministic

Francois Fleuret EE-550 — Deep learning / 9.3. Denoising and variational autoencoders 4/24

If we consider the following model for p

p(-|Z=2z)=x(g(zin),0)

where g is deterministic, we get

X —g(Z;n)|]?
Eq(X,Z)['OgP(X | Z)] = —Eqx,2) [%]
E I1X — g(F(X);n)lI?
“Box.2) | T2 |

Francois Fleuret EE-550 — Deep learning / 9.3. Denoising and variational autoencoders 4/24

If we consider the following model for p

p(-|Z=2z)=N(g(zn),0)

where g is deterministic, we get

X —g(Z;n)|]?
Eq<x,2)['°gp(x | Z)] = —Eqx,2) [%]
& I1X — g(F(X);n)lI?
— T Hq(X,2) 252 :

If optimizing 1 makes the bound tight, the final loss is the reconstruction error

N
. 1 2
argmax I(X,Z) ~ argmin (mnm m > 10— g(F(xa)i)l > :

n=1

Francois Fleuret EE-550 — Deep learning / 9.3. Denoising and variational autoencoders 4/24

If we consider the following model for p

p(-1Z=2)=~(g(zn)0)

where g is deterministic, we get

X —g(Z:n)|?
Eq(X,Z)[Ing(X | Z)] = —Eqx,z) {%}
—_E X —g(f(X);n)|I>
= Boxo) | |-

If optimizing 1 makes the bound tight, the final loss is the reconstruction error

N
. o1 2
arg(r)nax I(X,Z) ~ arggmn (mnln N E [[xn — g(f(xn);m)||) .

n=1

This abstract view of the encoder as “maximizing information” justifies its
use to build generic encoding layers.

Francois Fleuret EE-550 — Deep learning / 9.3. Denoising and variational autoencoders 4/24

In the perspective of building a good feature representation, just retaining
information is not enough, otherwise the identity would be a good choice.

Francois Fleuret EE-559 — Deep learning / 9.3. Denoising and variational autoencoders 5/24

In the perspective of building a good feature representation, just retaining
information is not enough, otherwise the identity would be a good choice.

In their work, Vincent et al. propose to degrade the signal with noise before
feeding it to the encoder, but to keep the MSE to the original signal.

This makes the encoder retain information about structures beyond local noise.

Francois Fleuret EE-559 — Deep learning / 9.3. Denoising and variational autoencoders 5/24

.
e 5 O R 1 1

HEUEREENENE
! 0 P I R
1 5) 0

(5 0
ERNEmREaDE
1 I 0
ENEENNEERE
HAEENEETSE
L e e S
105 20 55 I 7 I I

Figure 6: Weight decay vs. Gaussian noise. We show typical filtersti&am natural image
patches in the over-complete case (200 hidden unitsft: regular autoencoder with
weight decay. We tried a wide range of weight-decay values and learaieg: filters
never appeared to capture a more interesting structure than what is SleognNote
that some local blob detectors are recovered compared to using no weigy at all
(Figure 5 right).Right: a denoising autoencoder with additive Gaussian naise (.5)
learns Gabor-like local oriented edge detectors. Clearly the filters lagrmfualitatively
very different in the two cases.

(Vincent et al., 2010)

Francois Fleuret EE-550 — Deep learning / 9.3. Denoising and variational autoencoders 6/24

ZE N S K B
M 2 E=]
T A E

=1 HE B
¥ ME (L]
NI a7 N E |
H E BN R
5 = N =@
7]] &

N R N =

Figure 7: Filters obtained on natural image patches by denoising aut@eassing other noise
types.Left: with 10% salt-and-pepper noise, we obtain oriented Gabor-like filtersy The
appear slightly less localized than when using Gaussian noise (contrastigitie 6
right). Right: with 55% zero-masking noise we obtain filters that look like oriented
gratings. For the three considered noise types, denoising trainingragipdearn filters
that capture meaningful natural image statistics structure.

(Vincent et al., 2010)

Francois Fleuret EE-550 — Deep learning / 9.3. Denoising and variational autoencoders 7/24

Vincent et al. build deep MLPs whose layers are initialized successively as
encoders trained within a noisy autoencoder.

Francois Fleuret EE-559 — Deep learning / 9.3. Denoising and variational autoencoders 8/24

Vincent et al. build deep MLPs whose layers are initialized successively as
encoders trained within a noisy autoencoder.

Autoencoder

Francois Fleuret EE-550 — Deep learning / 9.3. Denoising and variational autoencoders

8/24

Vincent et al. build deep MLPs whose layers are initialized successively as
encoders trained within a noisy autoencoder.

Francois Fleuret EE-559 — Deep learning / 9.3. Denoising and variational autoencoders 8/24

Vincent et al. build deep MLPs whose layers are initialized successively as
encoders trained within a noisy autoencoder.

Autoencoder

Francois Fleuret EE-559 — Deep learning / 9.3. Denoising and variational autoencoders 8/24

Vincent et al. build deep MLPs whose layers are initialized successively as
encoders trained within a noisy autoencoder.

Francois Fleuret EE-559 — Deep learning / 9.3. Denoising and variational autoencoders 8/24

Francois Fleuret

Vincent et al. build deep MLPs whose layers are initialized successively as
encoders trained within a noisy autoencoder.

Bme

Autoencoder

EE-559 — Deep learning / 9.3. Denoising and variational autoencoders 8/24

Vincent et al. build deep MLPs whose layers are initialized successively as
encoders trained within a noisy autoencoder.

Francois Fleuret EE-559 — Deep learning / 9.3. Denoising and variational autoencoders 8/24

Vincent et al. build deep MLPs whose layers are initialized successively as
encoders trained within a noisy autoencoder.

L

A final classifying layer is added and the full structure can be fine-tuned.

Francois Fleuret EE-550 — Deep learning / 9.3. Denoising and variational autoencoders

8/24

Francois Fleuret

Data Set SVMp¢ DBN-1 SAE-3 DBN-3 SDAE-3(v)
MNIST 1.40t023 | 1.2Lo21| 1.40:023 | 1.24t022 | 1.28+022(25%)
basic 3.03:t015 | 3.94:017 | 3.46t016 | 3.1L015 | 2.84:0.15(10%)
rot 11.1%t028 | 14.69-031 | 10.30:0.27 | 10.30:0.27 | 9.53:0.26 (25%)
bg-rand 14.58:031 | 9.80:026 | 11.28t0.28 | 6.73:0.22 | 10.3Q-0.27 (40%)
bg-img 22.6%037 | 16.15:032 | 23.00:0.37 | 16.3%032 | 16.68:0.33 (25%)
bg-img-rot | 55.18:044 | 52.2%-044 | 51.93t0.44 | 47.3%:044 | 43.76:-0.43 (25%)
rect 2.15:013 | 4.71t019 | 2.41+013| 2.60:014 | 1.99:0.12(10%)
rect-img 24.04:037 | 23.69:0.37 | 24.05:037 | 22.50:0.37 | 21.59:0.36 (25%)
convex 19.13t0.34 | 19.92:035 | 18.41:034 | 18.63:0.34 | 19.06:0.34 (10%)
tzanetakis | 14.4%218 | 18.0%131 | 16.15-1.95 | 18.38t164 | 16.02-1.04(0.05)

EE-550 — Deep learning / 9.3. Denoising and variational autoencoders

(Vincent et al., 2010)

9/24

Variational Autoencoders

Francois Fleuret EE-550 — Deep learning / 9.3. Denoising and variational autoencoders 10/ 24

Coming back to generating a signal, instead of training an autoencoder and
modeling the distribution of Z, we can try an alternative approach:

Impose a distribution for Z and then train a decoder g so that g(Z) matches
the training data.

Francois Fleuret EE-559 — Deep learning / 9.3. Denoising and variational autoencoders 11/ 24

We consider the following two distributions:

e g is the distribution on 2 x RY of a pair (X, Z) composed of a sample X
taken from the data distribution and the output of the encoder on it,

Francois Fleuret EE-559 — Deep learning / 9.3. Denoising and variational autoencoders 12 /24

We consider the following two distributions:

e g is the distribution on 2 x RY of a pair (X, Z) composed of a sample X
taken from the data distribution and the output of the encoder on it,

e pis the distribution on & x RY of a pair (X, Z) composed of an encoding
state Z ~ (0, 1) and the output of the decoder g on it.

We should ideally look for the g that maximizes the log-likelihood

% > log p(xn) = By(x) [log p(X)]~

Francois Fleuret EE-559 — Deep learning / 9.3. Denoising and variational autoencoders 12 /24

We consider the following two distributions:

e g is the distribution on 2 x RY of a pair (X, Z) composed of a sample X
taken from the data distribution and the output of the encoder on it,

e pis the distribution on & x RY of a pair (X, Z) composed of an encoding
state Z ~ (0, 1) and the output of the decoder g on it.

We should ideally look for the g that maximizes the log-likelihood

% > log p(xn) = By(x) [log p(X)]~

However, while we can sample z and compute g(z), we cannot compute
p(x) for a given x, and even less compute its derivatives.

Francois Fleuret EE-559 — Deep learning / 9.3. Denoising and variational autoencoders 12 /24

The Variational Autoencoder proposed by Kingma and Welling (2013) relies
on a tractable approximation of this log-likelihood.

Note that their framework involves stochastic encoder f, and decoder g, whose
outputs depend on both their inputs and additional randomness.

Francois Fleuret EE-559 — Deep learning / 9.3. Denoising and variational autoencoders 13 /24

Remember that g(X) is the data distribution, and g(Z | X = x) is the
distribution of the latent encoding 7(x). We want to maximize

Eqx) [log P(X)} .

or equivalently minimize

Eq(0) | log a(X) — log p(X)] = D (a(X) || p(X))
< DuL(a(X, 2) 1| p(X, 2).

Francois Fleuret EE-550 — Deep learning / 9.3. Denoising and variational autoencoders

14 /24

Remember that g(X) is the data distribution, and g(Z | X = x) is the
distribution of the latent encoding 7(x). We want to maximize

Eq(x) [log P(X)})
or equivalently minimize

Eq(0) | log a(X) — log p(X)] = D (a(X) || p(X))
< DuL(a(X, 2) 1| p(X, 2).

We will minimize this latter bound, that can be rewritten as

Dicw(a(X, 2) | p(X, 2)) =
Equ0 [Diu(a(Z | X) 11 P(Z)) | = Eqix,2) | log p(X | 2)] + E(q(X).

Francois Fleuret EE-550 — Deep learning / 9.3. Denoising and variational autoencoders 14/ 24

Francois Fleuret

Kingma and Welling use Gaussians with diagonal covariance for both g(Z | X)
and p(X | Z):

o the encoder maps a data point from the signal space R€ to [the parameters
of] a Gaussian in the latent space R

f:RS - R¥

f f f f
X = (/“Llwuv/ldvo'lw":gd)?

EE-550 — Deep learning / 9.3. Denoising and variational autoencoders

15 /24

Francois Fleuret

Kingma and Welling use Gaussians with diagonal covariance for both g(Z | X)
and p(X | Z):

o the encoder maps a data point from the signal space R€ to [the parameters
of] a Gaussian in the latent space R
f: RS — R¥

f f f f
X = (/“Llwuv/ldvo'lw":gd)?

« the decoder maps a latent value from R to [the parameters of] a Gaussian
in the signal space R¢

g :RY = R

g g
z (/Ll,...,/l,g,(fl,...,(fg).

EE-550 — Deep learning / 9.3. Denoising and variational autoencoders

15 /24

We have to minimize

Z = By [Dr (@(Z | X) 11 p(2)) | = Egx) log p(X | 2)].

Francois Fleuret EE-550 — Deep learning / 9.3. Denoising and variational autoencoders 16/ 24

We have to minimize

Z = By [Dr (@(Z | X) 11 p(2)) | = Egx) log p(X | 2)].

The first term is the average of

Dy (q(Z [X =x) [p(Z

I\JH—!

35 (1 2rogof — (wh0)” - (o569) 7).
d

over the xps.

Francois Fleuret EE-550 — Deep learning / 9.3. Denoising and variational autoencoders 16/ 24

Francois Fleuret

We have to minimize

Z = By [Dr (@(Z | X) 11 p(2)) | = Egx) log p(X | 2)].

The first term is the average of

Dy (q(Z [X =x) || p(Z

I\JH—!

35 (1 2rogof — (wh0)” - (o569) 7).
d

over the xps.

The second term of & is the average of

1
—logp(X =x|Z=2)= EZ <Iog27‘r+2|ogad(2)+
d

(xg — ui(Z))2>
(o5(2))

over the x,, with one z, sampled for each (could be more)

Zn~ N (,uf(x,,), of(xn)> ,n=1,...,N.

EE-550 — Deep learning / 9.3. Denoising and variational autoencoders 16/ 24

— Latent space F

Original space &

Francois Fleuret EE-559 — Deep learning / 9.3. Denoising and variational autoencoders 17 / 24

— Latent space F

Original space &

Francois Fleuret EE-559 — Deep learning / 9.3. Denoising and variational autoencoders 17 / 24

7

Latent space #

Original space &

Francois Fleuret EE-550 — Deep learning / 9.3. Denoising and variational autoencoders 17/ 24

@

— Latent space F

Original space &

Francois Fleuret EE-550 — Deep learning / 9.3. Denoising and variational autoencoders 17/ 24

7

Latent space #

Original space &

Francois Fleuret EE-550 — Deep learning / 9.3. Denoising and variational autoencoders 17/ 24

Latent space #

Original space &

Francois Fleuret EE-550 — Deep learning / 9.3. Denoising and variational autoencoders 17/ 24

Regarding implementation: the encoder now maps to twice the number of
dimensions, which corresponds to the s and log ((O'f)2)S.

Francois Fleuret EE-559 — Deep learning / 9.3. Denoising and variational autoencoders 18 /24

Regarding implementation: the encoder now maps to twice the number of
dimensions, which corresponds to the s and log ((O'f)2)S.

Also, as in Kingma and Welling (2013), we use a fixed variance of 1 for the
decoder. So it outputs the p8s alone, and its dimension remains unchanged.

Francois Fleuret EE-559 — Deep learning / 9.3. Denoising and variational autoencoders 18 /24

The first term of the loss is the average of

D (o2 | X =) 1(2)) = =5 3 (14 2108)0 — (450)” = (#400) 7).

d

over the x,.

Francois Fleuret EE-550 — Deep learning / 9.3. Denoising and variational autoencoders 19/ 24

The first term of the loss is the average of

D (a(Z | X =) p(2) =3 3 (1 +2log o)) — ()" - (as(x))Q) .

d

over the x,.

This can be implemented as

param_f = model.encode (input)
mu_f, logvar_f = param_f.split(param_f.size(1)//2, 1)

kl = - 0.5 * (1 + logvar_f - mu_f.pow(2) - logvar_f.exp())
kl_loss = kl.sum() / input.size(0)

Francois Fleuret EE-550 — Deep learning / 9.3. Denoising and variational autoencoders 19/ 24

Since we use a constant variance of 1 for the decoder, the second term of &
becomes the average of

1
—logp(X = x| Z =2) = 53 (xs — n§(2))* + cst
d

over the x,, with one z, sampled for each, i.e.

Zn~ N (,uf(x,,),of(x,,)> ,n=1,...,N.

Francois Fleuret EE-550 — Deep learning / 9.3. Denoising and variational autoencoders 20/ 24

Francois Fleuret

Since we use a constant variance of 1 for the decoder, the second term of &

becomes the average of

1
—logp(X =x|Z=2)= 5 Z(xd — p§(2))? + cst
d

over the x,, with one z, sampled for each, i.e.
20~ (W (xn), 0 (x0)) s n =1, NS
This can be implemented as

std_f = torch.exp(0.5 * logvar_f)
z = torch.empty_like(mu_f).normal_() * std_f + mu_f
output = model.decode(z)

fit = 0.5 * (output - input).pow(2)
fit_loss = fit.sum() / input.size(0)

EE-550 — Deep learning / 9.3. Denoising and variational autoencoders

20 / 24

We had for the standard autoencoder

z = model.encode (input)
output = model.decode(z)
loss = 0.5 * (output - input).pow(2).sum() / input.size(0)

Francois Fleuret EE-550 — Deep learning / 9.3. Denoising and variational autoencoders 21/ 24

Francois Fleuret

We had for the standard autoencoder

z = model.encode (input)
output = model.decode(z)

loss = 0.5 * (output - input).pow(2).sum() / input.size(0)

and putting everything together we get for the VAE

param_f = model.encode(input)
mu_f, logvar_f = param_f.split(param_f.size(1)//2, 1)

kl = - 0.5 x (1 + logvar_f - mu_f.pow(2) - logvar_f.exp())

k1l_loss = kl.sum() / input.size(0)

std_f = torch.exp(0.5 * logvar_f)
z = torch.empty_like(mu_f).normal_() * std_f + mu_f
output = model.decode(z)

fit = 0.5 * (output - input).pow(2)
fit_loss = fit.sum() / input.size(0)

loss = kl_loss + fit_loss

EE-550 — Deep learning / 9.3. Denoising and variational autoencoders

21 /24

We had for the standard autoencoder

z = model.encode (input)
output = model.decode(z)
loss = 0.5 * (output - input).pow(2).sum() / input.size(0)

and putting everything together we get for the VAE

param_f = model.encode(input)
mu_f, logvar_f = param_f.split(param_f.size(1)//2, 1)

kl = - 0.5 x (1 + logvar_f - mu_f.pow(2) - logvar_f.exp())
k1l_loss = kl.sum() / input.size(0)

std_f = torch.exp(0.5 * logvar_f)
z = torch.empty_like(mu_f).normal_() * std_f + mu_f
output = model.decode(z)

fit = 0.5 * (output - input).pow(2)
fit_loss = fit.sum() / input.size(0)

loss = kl_loss + fit_loss

During inference we do not sample, and instead use ;. and ;€ as prediction.

Francois Fleuret EE-550 — Deep learning / 9.3. Denoising and variational autoencoders 21/ 24

Original

721041 4a970606
901597%472605%
474013 \3472

Autoencoder reconstruction (d = 32

721064194495 920606
901597347605
4e740\V3\3472

~

Variational Autoencoder reconstruction (d = 32)

72106419495 9720K0
901 597%47260%¢5
40740\ 3 \3472

We can look at two latent features to check that they are Normal for the VAE.

Francois Fleuret EE-559 — Deep learning / 9.3. Denoising and variational autoencoders 23 /24

We can look at two latent features to check that they are Normal for the VAE.

10 10
5 5
0 0),
X
5 5
10 10
15 10 5 0 5 10 15 15 10 5 o 5 10 15

Francois Fleuret EE-559 — Deep learning / 9.3. Denoising and variational autoencoders 23 /24

Francois Fleuret

Autoencoder sampling (d = 32)

‘?t‘*‘-&'ﬁ IR S S Y
g v F?&Z?a"d}i
333&1?6{%45319

Variational Autoencoder sampling (d = 32)

| Ye€eBF Yy FfYyY&EZ G4
8049592494772
948 7ecvw902 75

EE-550 — Deep learning / 9.3. Denoising and variational autoencoders

24 /24

The end

References

D. P. Kingma and M. Welling. Auto-encoding variational bayes. CoRR, abs/1312.6114,

2013.
P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked denoising

autoencoders: Learning useful representations in a deep network with a local denoising
criterion. Journal of Machine Learning Research (JMLR), 11:3371-3408, 2010.

	Denoising Autoencoders
	Variational Autoencoders

