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Constructing deep generative architectures requires layers to increase the signal
dimension, the contrary of what we have done so far with feed-forward networks.
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Constructing deep generative architectures requires layers to increase the signal
dimension, the contrary of what we have done so far with feed-forward networks.

Generative processes that consist of optimizing the input rely on

back-propagation to expend the signal from a low-dimension representation to
the high-dimension signal space.
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Constructing deep generative architectures requires layers to increase the signal

dimension, the contrary of what we have done so far with feed-forward networks.

Generative processes that consist of optimizing the input rely on
back-propagation to expend the signal from a low-dimension representation to

the high-dimension signal space.

The same can be done in the forward pass with transposed convolution layers
whose forward operation corresponds to a convolution layer’'s backward pass.
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Consider a 1d convolution with a kernel s
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Consider a 1d convolution with a kernel s
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which looks a lot like a standard convolution layer, except that the kernel
coefficients are visited in reverse order.
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This is actually the standard convolution operator from signal processing. If x
denotes this operation, we have

(x*K); = ZX,; Ki—at1-
a
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This is actually the standard convolution operator from signal processing. If x
denotes this operation, we have

(x*K); = Zxa Ki—at1-
a

Coming back to the backward pass of the convolution layer, if

Y =X®K
then

o] = [ )
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In the deep-learning field, since it corresponds to transposing the weight matrix
of the equivalent fully-connected layer, it is called a transposed convolution.
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In the deep-learning field, since it corresponds to transposing the weight matrix
of the equivalent fully-connected layer, it is called a transposed convolution.
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While a convolution can be seen as a series of inner products, a transposed
convolution can be seen as a weighted sum of translated kernels.
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Convolution layer

Input

1 4 -1 0 2 -2 1 3 3 1
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Convolution layer

Input

1 4 -1 0 2 -2 1 3 3 1

Kernel
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Convolution layer

Input

1 4 -1 0 2 -2 1 3

w
1 2 0 -1
w
Output
9
W—-w+1
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Convolution layer

Input

-1 0 2 -2 1 3

w
2 0 -1
w
Output
0
W—-w+1
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Convolution layer

Input

1 4 -1 0 2 -2 1 3 3 1

Output

W—-w+1
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Convolution layer

Input

1 4 -1 0 2 -2 1 3 3 1

Output

9 0 1 3

W—-w+1
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Convolution layer

Input

1 4 -1 0 2 -2 1 8 3 1

Output

9 0 1 3 -5

W—-w+1
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Convolution layer

Input

1 4 -1 0 2 -2 1 8 8 1

Output

9 0 1 3 -5 -3

W—-w+1
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Convolution layer

Input

1 4 -1 0 2 -2 1 8 8 1

Output

9 0 1 3 -5 -3 6

W—-w+1
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Convolution layer

Input

Output

9 0 1 3 -5 -3 6

W—-w+1
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Transposed convolution layer

Input

w
Kernel
1 2 -1
w
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Transposed convolution layer

Input
2 3 0 -1
w
1 2 -1
2 4 -2
Output
2
W+w-—1
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Transposed convolution layer

Input
2 3 0 -1
w
1 2 -1
2 | 4 | 2
3 6 -3
Output
2 7
W+w-—1
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Transposed convolution layer

Input
2 3 0 -1
w
1 2 -1
2 4 -2
3 6 -3
0 0 0
Output
2 7 4
W+w-—1
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Transposed convolution layer

Input
2 3 0 -1
w
1 2 -1
2 4 -2
3 6 -3
0 0 0
-1 -2 1
Output
2 7 4 -4 -2 1

W+w-—1
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Transposed convolution layer

Input

w
2 4 -2
3 6 -3
0 0 0
-1 -2 1
Output
2 7 4 -4 -2 1

W+w-—1
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Transposed convolution layer

Input

Kernel

1 2 -1

Output

W+w-—1
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torch.nn.functional.conv_transposeld implements the operation we just
described. It takes as input a batch of multi-channel samples, and produces a
batch of multi-channel samples.

>>> x = torch.tensor([[[0., 0., 1., 0., 0., 0., 0.111)
>>> k = torch.tensor([[[1., 2., 3.11])

>>> F.convild(x, k)

tensor([[[ 3., 2., 1., 0., 0.111)
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torch.nn.functional.conv_transposeld implements the operation we just
described. It takes as input a batch of multi-channel samples, and produces a
batch of multi-channel samples.

>>> x = torch.tensor([[[0., 0., 1., 0., 0., 0., 0.111)
>>> k = torch.tensor([[[1., 2., 3.11])

>>> F.convild(x, k)

tensor([[[ 3., 2., 1., 0., 0.111)

LAl

>>> F.conv_transposeld(x, k)
tensor([[[ 0., o©O., 1., 2., 3., 0., 0., 0., 0.111

LAl AL
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The class torch.nn.ConvTransposeld embeds that operation into a

torch.nn.Module.

>>> x = torch.tensor([[[ 2., 3., 0., -1.111)

>>> m = nn.ConvTransposeld(1l, 1, kernel_size=3)
>>> m.bias.data.zero_()

tensor ([0.])

>>> m.weight.data.copy_(torch.tensor([ 1, 2, -1 1))
tensor ([[[ 1., 2., -1.111)

>>> y = m(x)

>>> y

tensor ([[[ 2., 7., 4., -4., -2., 1.111, grad_fn=<SqueezeBackwardl>)
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Transposed convolutions also have a dilation parameter that behaves as for
convolution and expends the kernel size without increasing the number of
parameters by making it sparse.
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Transposed convolutions also have a dilation parameter that behaves as for
convolution and expends the kernel size without increasing the number of
parameters by making it sparse.

They also have a stride and padding parameters, however, due to the relation
between convolutions and transposed convolutions:

While for convolutions stride and padding are defined in the input

map, for transposed convolutions these parameters are defined in the
output map, and the latter modulates a cropping operation.
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Transposed convolution layer (stride = 2)

Input

Kernel

Output

s(W—-1)+w
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Transposed convolution layer (stride = 2)

Input

w
1 2 -1
2 4 -2
Output
2 4
s(W—-1)+w
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Transposed convolution layer (stride = 2)

Input

w
1 2 -1
2 4 -2
s
3 6 -3
Output
2 4 1 6
s(W—-1)+w
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Transposed convolution layer (stride = 2)

Input

w
1 2 -1
2 4 -2
s
3 6 -3
s
0 0 0
Output
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Transposed convolution layer (stride = 2)

Input

w
1 2 -1
2 4 -2
s
3 6 -3
s
0 0 0
s
-1 -2 1
Output
2 4 1 6 -3 0 -1 -2 1
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Transposed convolution layer (stride = 2)

Input

w
2 4 -2
s
3 6 -3
s
0 0 0
s
-1 -2 1
Output
2 4 1 6 -3 0 -1 -2 1
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Transposed convolution layer (stride = 2)

Input

Kernel

Output
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The composition of a convolution and a transposed convolution of same
parameters keep the signal size [roughly] unchanged.

A convolution with a stride greater than one may ignore parts of the
signal. Its composition with the corresponding transposed convolution
generates a map of the size of the observed area.
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The composition of a convolution and a transposed convolution of same
parameters keep the signal size [roughly] unchanged.

A convolution with a stride greater than one may ignore parts of the
signal. Its composition with the corresponding transposed convolution
generates a map of the size of the observed area.

For instance, a 1d convolution of kernel size w and stride s composed with the
transposed convolution of same parameters maintains the signal size W, only if

dgeN, W=w+sgq.
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It has been observed that transposed convolutions may create some
grid-structure artifacts, since generated pixels are not all covered similarly.

For instance with a 4 x 4 kernel and stride 3
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An alternative is to use an analytic up-scaling, implemented in the PyTorch
modules nn.Upsample.

>>> x = torch.tensor([[[[ 1., 2. 1, [ 3., 4. 111D

>>> b = nn.Upsample(scale_factor = 3, mode = ’bilinear’)
>>> b(x)
tensor ([[[[ 1.0000, 1.0000, 1.3333, 1.6667, 2.0000, 2.0000],
[ 1.0000, 1.0000, 1.3333, 1.6667, 2.0000, 2.0000],
[ 1.6667, 1.6667, 2.0000, 2.3333, 2.6667, 2.6667],
[ 2.3333, 2.3333, 2.6667, 3.0000, 3.3333, 3.3333],
[ 3.0000, 3.0000, 3.3333, 3.6667, 4.0000, 4.0000],
[ 3.0000, 3.0000, 3.3333, 3.6667, 4.0000, 4.0000]111)
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An alternative is to use an analytic up-scaling, implemented in the PyTorch
modules nn.Upsample.

>>> x = torch.tensor([[[[ 1., 2. 1, [ 3., 4. 111D

>>> b = nn.Upsample(scale_factor = 3, mode = ’bilinear’)

>>> b(x)

tensor ([[[[ 1.0000, 1.0000, 1.3333, 1.6667, 2.0000, 2.0000],
[ 1.0000, 1.0000, 1.3333, 1.6667, 2.0000, 2.0000],
[ 1.6667, 1.6667, 2.0000, 2.3333, 2.6667, 2.6667],
[ 2.3333, 2.3333, 2.6667, 3.0000, 3.3333, 3.3333],
[ 3.0000, 3.0000, 3.3333, 3.6667, 4.0000, 4.0000],
[ 3.0000, 3.0000, 3.3333, 3.6667, 4.0000, 4.00001111)

>>> u = nn.Upsample(scale_factor = 3, mode = ’nearest’)

>>> u(x)

tensor ([[[[ 1., 1., 1., 2., 2., 2.1,
1., 1., 1., 2., 2., 2.7,
[1., 1., 1., 2., 2., 2.1,
[3., 3., 3., 4., 4., 4.1,
[3., 3., 3., 4., 4., 4.1,
[3., 3., 3., 4., 4., 4.111D
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Such module is usually combined with a convolution to learn local corrections
to undesirable artifacts of the up-scaling.

In practice, a transposed convolution such as

nn.ConvTranspose2d(nic, noc,
kernel_size = 3, stride = 2,
padding = 1, output_padding = 1),

can be replaced by

nn.Upsample(scale_factor = 2, mode = ’bilinear’)
nn.Conv2d(nic, noc, kernel_size = 3, padding = 1)
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The end



