
EE-559 – Deep learning

11.3. Word embeddings and translation

François Fleuret

https://fleuret.org/ee559/

December 14, 2018

ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE



Word embeddings and CBOW

François Fleuret EE-559 – Deep learning / 11.3. Word embeddings and translation 1 / 31



An important application domain for machine intelligence is Natural Language
Processing (NLP).

• Speech and (hand)writing recognition,

• auto-captioning,

• part-of-speech tagging,

• sentiment prediction,

• translation,

• question answering.

While language modeling was historically addressed with formal methods, in
particular generative grammars, state-of-the-art and deployed methods are now
heavily based on statistical learning and deep learning.
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A core difficulty of Natural Language Processing is to devise a proper density
model for sequences of words.

However, since a vocabulary is usually of the order of 104 − 106 words,
empirical distributions can not be estimated for more than triplets of words.
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The standard strategy to mitigate this problem is to embed words into a
geometrical space to take advantage of data regularities for further [statistical]
modeling.

The geometry after embedding should account for synonymy, but also for
identical word classes, etc. E.g. we would like such an embedding to make “cat”
and “tiger” close, but also “red” and “blue”, or “eat” and “work”, etc.

Even though they are not “deep”, classical word embedding models are key
elements of NLP with deep-learning.
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Let
kt ∈ {1, . . . ,W }, t = 1, . . . ,T

be a training sequence of T words, encoded as IDs through a vocabulary of W
words.

Given an embedding dimension D, the objective is to learn vectors

Ek ∈ RD , k ∈ {1, . . . ,W }

so that “similar” words are embedded with “similar” vectors.
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A common word embedding is the Continuous Bag of Words (CBOW) version
of word2vec (Mikolov et al., 2013a).

In this model, they embedding vectors are chosen so that a word can be
predicted from [a linear function of] the sum of the embeddings of words
around it.
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More formally, let C ∈ N∗ be a “context size”, and

C t = (kt−C , . . . , kt−1, kt+1, . . . , kt+C )

be the “context” around kt , that is the indexes of words around it.

C C

Ct

k1 · · · kt−C · · · kt−1 kt kt+1 · · · kt+C . . . kT
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The embeddings vectors

Ek ∈ RD , k = 1, . . . ,W ,

are optimized jointly with an array

M ∈ RW×D

so that the predicted vector of W scores

ψ(t) = M
∑
k∈Ct

Ek

is a good predictor of the value of kt .
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Ideally we would minimize the cross-entropy between the vector of scores
ψ(t) ∈ RW and the class kt

∑
t

− log

(
expψ(t)kt∑W
k=1 expψ(t)k

)
.

However, given the vocabulary size, doing so is numerically unstable and
computationally demanding.
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The “negative sampling” approach uses a loss estimated on the prediction for
the correct class kt and only Q �W incorrect classes κt,1, . . . , κt,Q sampled
at random.

In our implementation we take the later uniformly in {1, . . . ,W } and use the
same loss as Mikolov et al. (2013b):

∑
t

log
(

1 + e−ψ(t)kt

)
+

Q∑
q=1

log
(

1 + eψ(t)κt,q
)
.

We want ψ(t)kt to be large and all the ψ(t)κt,q to be small.
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Although the operation
x 7→ Ex

could be implemented as the product between a one-hot vector and a matrix, it
is far more efficient to use an actual lookup table.
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The PyTorch module nn.Embedding does precisely that. It is parametrized with
a number N of words to embed, and an embedding dimension D.

It gets as input an integer tensor of arbitrary dimension A1 × · · · × AU ,
containing values in {0, . . . ,N − 1} and it returns a float tensor of dimension
A1 × · · · × AU × D.

If w are the embedding vectors, x the input tensor, y the result, we have

y [a1, . . . , aU , d ] = w [x[a1, . . . , aU ]][d ].
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>>> e = nn.Embedding(10, 3)
>>> x = torch.tensor([[1, 1, 2, 2], [0, 1, 9, 9]], dtype = torch.int64)
>>> e(x)
tensor([[[ 0.0386, -0.5513, -0.7518],

[ 0.0386, -0.5513, -0.7518],
[-0.4033, 0.6810, 0.1060],
[-0.4033, 0.6810, 0.1060]],

[[-0.5543, -1.6952, 1.2366],
[ 0.0386, -0.5513, -0.7518],
[ 0.2793, -0.9632, 1.6280],
[ 0.2793, -0.9632, 1.6280]]])

François Fleuret EE-559 – Deep learning / 11.3. Word embeddings and translation 13 / 31



Our CBOW model has as parameters two embeddings

E ∈ RW×D and M ∈ RW×D .

Its forward gets as input a pair of integer tensors corresponding to a batch of
size B:

• c of size B × 2C contains the IDs of the words in a context, and

• d of size B × R contains the IDs, for each of the B contexts, of the R
words for which we want the prediction score (that will be the correct one
and Q negative ones).

it returns a tensor y of size B × R containing the dot products.

y [n, j] =
1

D
Md [n,j] ·

(∑
i

Ec[n,i ]

)
.
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class CBOW(nn.Module):
def __init__(self, voc_size = 0, embed_dim = 0):

super(CBOW, self).__init__()
self.embed_dim = embed_dim
self.embed_E = nn.Embedding(voc_size, embed_dim)
self.embed_M = nn.Embedding(voc_size, embed_dim)

def forward(self, c, d):
sum_w_E = self.embed_E(c).sum(1).unsqueeze(1).transpose(1, 2)
w_M = self.embed_M(d)
return w_M.matmul(sum_w_E).squeeze(2) / self.embed_dim

François Fleuret EE-559 – Deep learning / 11.3. Word embeddings and translation 15 / 31



Regarding the loss, we can use nn.BCEWithLogitsLoss which implements∑
t

yt log(1 + exp(−xt)) + (1− yt) log(1 + exp(xt)).

It takes care in particular of the numerical problem that may arise for large
values of xt if implemented “naively”.
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Before training a model, we need to prepare data tensors of word IDs from a
text file. We will use a 100Mb text file taken from Wikipedia and

• make it lower-cap,

• remove all non-letter characters,

• replace all words that appear less than 100 times with ’*’,

• associate to each word a unique id.

From the resulting sequence of length T stored in a integer tensor, and the
context size C , we will generate mini-batches, each of two tensors

• a ’context’ integer tensor c of dimension B × 2C , and

• a ’word’ integer tensor w of dimension B.
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If the corpus is “The black cat plays with the black ball.”, we will get the
following word IDs:

the: 0, black: 1, cat : 2, plays: 3, with: 4, ball: 5.

The corpus will be encoded as

the black cat plays with the black ball

0 1 2 3 4 0 1 5

and the data and label tensors will be

Words IDs c w
the black cat plays with 0 1 2 3 4 0, 1, 3, 4 2

black cat plays with the 1 2 3 4 0 1, 2, 4, 0 3
cat plays with the black 2 3 4 0 1 2, 3, 0, 1 4

plays with the black ball 3 4 0 1 5 3, 4, 1, 5 0
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We can train the model for an epoch with:

for k in range(0, id_seq.size(0) - 2 * context_size - batch_size, batch_size):
c, w = extract_batch(id_seq, k, batch_size, context_size)

d = torch.empty(w.size(0), 1 + nb_neg_samples, dtype = torch.int64)
d.random_(voc_size)
d[:, 0] = w

target = torch.empty(d.size())
target.narrow(1, 0, 1).fill_(1)
target.narrow(1, 1, nb_neg_samples).fill_(0)

output = model(c, d)
loss = bce_loss(output, target)

optimizer.zero_grad()
loss.backward()
optimizer.step()
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Some nearest-neighbors for the cosine distance between the embeddings

d(w ,w ′) =
Ew · Ew′

‖Ew‖‖Ew′‖
.

paris bike cat fortress powerful

0.61 parisian 0.61 bicycle 0.55 cats 0.61 fortresses 0.47 formidable

0.59 france 0.51 bicycles 0.54 dog 0.55 citadel 0.44 power

0.55 brussels 0.51 bikes 0.49 kitten 0.55 castle 0.44 potent

0.53 bordeaux 0.49 biking 0.44 feline 0.52 fortifications 0.40 fearsome

0.51 toulouse 0.47 motorcycle 0.42 pet 0.51 forts 0.40 destroy

0.51 vienna 0.43 cyclists 0.40 dogs 0.50 siege 0.39 wielded

0.51 strasbourg 0.42 riders 0.40 kittens 0.49 stronghold 0.38 versatile

0.49 munich 0.41 sled 0.39 hound 0.49 castles 0.38 capable

0.49 marseille 0.41 triathlon 0.39 squirrel 0.48 monastery 0.38 strongest

0.48 rouen 0.41 car 0.38 mouse 0.48 besieged 0.37 able

François Fleuret EE-559 – Deep learning / 11.3. Word embeddings and translation 20 / 31



An alternative algorithm is the skip-gram model, which optimizes the
embedding so that a word can be predicted by any individual word in its
context (Mikolov et al., 2013a).

w(t-2)

w(t+1)

w(t-1)

w(t+2)

w(t)

SUM

       INPUT         PROJECTION         OUTPUT

w(t)

          INPUT         PROJECTION      OUTPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

                   CBOW                                                   Skip-gram

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.

R words from the future of the current word as correct labels. This will require us to do R × 2
word classifications, with the current word as input, and each of the R + R words as output. In the
following experiments, we use C = 10.

4 Results

To compare the quality of different versions of word vectors, previous papers typically use a table
showing example words and their most similar words, and understand them intuitively. Although
it is easy to show that word France is similar to Italy and perhaps some other countries, it is much
more challenging when subjecting those vectors in a more complex similarity task, as follows. We
follow previous observation that there can be many different types of similarities between words, for
example, word big is similar to bigger in the same sense that small is similar to smaller. Example
of another type of relationship can be word pairs big - biggest and small - smallest [20]. We further
denote two pairs of words with the same relationship as a question, as we can ask: ”What is the
word that is similar to small in the same sense as biggest is similar to big?”

Somewhat surprisingly, these questions can be answered by performing simple algebraic operations
with the vector representation of words. To find a word that is similar to small in the same sense as
biggest is similar to big, we can simply compute vector X = vector(”biggest”)−vector(”big”)+
vector(”small”). Then, we search in the vector space for the word closest to X measured by cosine
distance, and use it as the answer to the question (we discard the input question words during this
search). When the word vectors are well trained, it is possible to find the correct answer (word
smallest) using this method.

Finally, we found that when we train high dimensional word vectors on a large amount of data, the
resulting vectors can be used to answer very subtle semantic relationships between words, such as
a city and the country it belongs to, e.g. France is to Paris as Germany is to Berlin. Word vectors
with such semantic relationships could be used to improve many existing NLP applications, such
as machine translation, information retrieval and question answering systems, and may enable other
future applications yet to be invented.

5

(Mikolov et al., 2013a)
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Trained on large corpora, such models reflect semantic relations in the linear
structure of the embedding space. E.g.

E[paris] − E[france] + E[italy ] ' E[rome]

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skip-
gram model trained on 783M words with 300 dimensionality).

Relationship Example 1 Example 2 Example 3
France - Paris Italy: Rome Japan: Tokyo Florida: Tallahassee
big - bigger small: larger cold: colder quick: quicker

Miami - Florida Baltimore: Maryland Dallas: Texas Kona: Hawaii
Einstein - scientist Messi: midfielder Mozart: violinist Picasso: painter
Sarkozy - France Berlusconi: Italy Merkel: Germany Koizumi: Japan

copper - Cu zinc: Zn gold: Au uranium: plutonium
Berlusconi - Silvio Sarkozy: Nicolas Putin: Medvedev Obama: Barack

Microsoft - Windows Google: Android IBM: Linux Apple: iPhone
Microsoft - Ballmer Google: Yahoo IBM: McNealy Apple: Jobs

Japan - sushi Germany: bratwurst France: tapas USA: pizza

assumes exact match, the results in Table 8 would score only about 60%). We believe that word
vectors trained on even larger data sets with larger dimensionality will perform significantly better,
and will enable the development of new innovative applications. Another way to improve accuracy is
to provide more than one example of the relationship. By using ten examples instead of one to form
the relationship vector (we average the individual vectors together), we have observed improvement
of accuracy of our best models by about 10% absolutely on the semantic-syntactic test.

It is also possible to apply the vector operations to solve different tasks. For example, we have
observed good accuracy for selecting out-of-the-list words, by computing average vector for a list of
words, and finding the most distant word vector. This is a popular type of problems in certain human
intelligence tests. Clearly, there is still a lot of discoveries to be made using these techniques.

6 Conclusion

In this paper we studied the quality of vector representations of words derived by various models on
a collection of syntactic and semantic language tasks. We observed that it is possible to train high
quality word vectors using very simple model architectures, compared to the popular neural network
models (both feedforward and recurrent). Because of the much lower computational complexity, it
is possible to compute very accurate high dimensional word vectors from a much larger data set.
Using the DistBelief distributed framework, it should be possible to train the CBOW and Skip-gram
models even on corpora with one trillion words, for basically unlimited size of the vocabulary. That
is several orders of magnitude larger than the best previously published results for similar models.

An interesting task where the word vectors have recently been shown to significantly outperform the
previous state of the art is the SemEval-2012 Task 2 [11]. The publicly available RNN vectors were
used together with other techniques to achieve over 50% increase in Spearman’s rank correlation
over the previous best result [31]. The neural network based word vectors were previously applied
to many other NLP tasks, for example sentiment analysis [12] and paraphrase detection [28]. It can
be expected that these applications can benefit from the model architectures described in this paper.

Our ongoing work shows that the word vectors can be successfully applied to automatic extension
of facts in Knowledge Bases, and also for verification of correctness of existing facts. Results
from machine translation experiments also look very promising. In the future, it would be also
interesting to compare our techniques to Latent Relational Analysis [30] and others. We believe that
our comprehensive test set will help the research community to improve the existing techniques for
estimating the word vectors. We also expect that high quality word vectors will become an important
building block for future NLP applications.

10

(Mikolov et al., 2013a)
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The main benefit of word embeddings is that they are trained with unsupervised
corpora, hence possibly extremely large.

This modeling can then be leveraged for small-corpora tasks such as

• sentiment analysis,

• question answering,

• topic classification,

• etc.
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Sequence-to-sequence translation
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sequence of words representing the answer. It is therefore clear that a domain-independent method
that learns to map sequences to sequences would be useful.

Sequences pose a challenge for DNNs because they require that the dimensionality of the inputs and
outputs is known and fixed. In this paper, we show that a straightforward application of the Long
Short-Term Memory (LSTM) architecture [16] can solve general sequence to sequence problems.
The idea is to use one LSTM to read the input sequence, one timestep at a time, to obtain large fixed-
dimensional vector representation, and then to use anotherLSTM to extract the output sequence
from that vector (fig. 1). The second LSTM is essentially a recurrent neural network language model
[28, 23, 30] except that it is conditioned on the input sequence. The LSTM’s ability to successfully
learn on data with long range temporal dependencies makes ita natural choice for this application
due to the considerable time lag between the inputs and theircorresponding outputs (fig. 1).

There have been a number of related attempts to address the general sequence to sequence learning
problem with neural networks. Our approach is closely related to Kalchbrenner and Blunsom [18]
who were the first to map the entire input sentence to vector, and is related to Cho et al. [5] although
the latter was used only for rescoring hypotheses produced by a phrase-based system. Graves [10]
introduced a novel differentiable attention mechanism that allows neural networks to focus on dif-
ferent parts of their input, and an elegant variant of this idea was successfully applied to machine
translation by Bahdanau et al. [2]. The Connectionist Sequence Classification is another popular
technique for mapping sequences to sequences with neural networks, but it assumes a monotonic
alignment between the inputs and the outputs [11].

Figure 1: Our model reads an input sentence “ABC” and produces “WXYZ” as the output sentence. The
model stops making predictions after outputting the end-of-sentence token. Note that the LSTM reads the
input sentence in reverse, because doing so introduces manyshort term dependencies in the data that make the
optimization problem much easier.

The main result of this work is the following. On the WMT’14 English to French translation task,
we obtained a BLEU score of34.81 by directly extracting translations from an ensemble of 5 deep
LSTMs (with 384M parameters and 8,000 dimensional state each) using a simple left-to-right beam-
search decoder. This is by far the best result achieved by direct translation with large neural net-
works. For comparison, the BLEU score of an SMT baseline on this dataset is 33.30 [29]. The 34.81
BLEU score was achieved by an LSTM with a vocabulary of 80k words, so the score was penalized
whenever the reference translation contained a word not covered by these 80k. This result shows
that a relatively unoptimized small-vocabulary neural network architecture which has much room
for improvement outperforms a phrase-based SMT system.

Finally, we used the LSTM to rescore the publicly available 1000-best lists of the SMT baseline on
the same task [29]. By doing so, we obtained a BLEU score of 36.5, which improves the baseline by
3.2 BLEU points and is close to the previous best published result on this task (which is 37.0 [9]).

Surprisingly, the LSTM did not suffer on very long sentences, despite the recent experience of other
researchers with related architectures [26]. We were able to do well on long sentences because we
reversed the order of words in the source sentence but not thetarget sentences in the training and test
set. By doing so, we introduced many short term dependenciesthat made the optimization problem
much simpler (see sec. 2 and 3.3). As a result, SGD could learnLSTMs that had no trouble with
long sentences. The simple trick of reversing the words in the source sentence is one of the key
technical contributions of this work.

A useful property of the LSTM is that it learns to map an input sentence of variable length into
a fixed-dimensional vector representation. Given that translations tend to be paraphrases of the
source sentences, the translation objective encourages the LSTM to find sentence representations
that capture their meaning, as sentences with similar meanings are close to each other while different

2

(Sutskever et al., 2014)

François Fleuret EE-559 – Deep learning / 11.3. Word embeddings and translation 25 / 31



English to French translation.

Training:

• corpus 12M sentences, 348M French words, 30M English words,

• LSTM with 4 layers, one for encoding, one for decoding,

• 160, 000 words input vocabulary, 80, 000 output vocabulary,

• 1, 000 dimensions word embedding, 384M parameters total,

• input sentence is reversed,

• gradient clipping.

The hidden state that contains the information to generate the translation
is of dimension 8, 000.

Inference is done with a “beam search”, that consists of greedily increasing the
size of the predicted sequence while keeping a bag of K best ones.
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Comparing a produced sentence to a reference one is complex, since it is related
to their semantic content.

A widely used measure is the BLEU score, that counts the fraction of groups of
one, two, three and four words (aka “n-grams”) from the generated sentence
that appear in the reference translations (Papineni et al., 2002).

The exact definition is complex, and the validity of this score is disputable since
it poorly accounts for semantic.
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Method test BLEU score (ntst14)
Bahdanau et al. [2] 28.45

Baseline System [29] 33.30
Single forward LSTM, beam size 12 26.17
Single reversed LSTM, beam size 12 30.59

Ensemble of 5 reversed LSTMs, beam size 1 33.00
Ensemble of 2 reversed LSTMs, beam size 12 33.27
Ensemble of 5 reversed LSTMs, beam size 2 34.50
Ensemble of 5 reversed LSTMs, beam size 12 34.81

Table 1: The performance of the LSTM on WMT’14 English to French test set (ntst14). Note that
an ensemble of 5 LSTMs with a beam of size 2 is cheaper than of a single LSTM with a beam of
size 12.

Method test BLEU score (ntst14)
Baseline System [29] 33.30

Cho et al. [5] 34.54
Best WMT’14 result [9] 37.0

Rescoring the baseline 1000-best with a single forward LSTM 35.61
Rescoring the baseline 1000-best with a single reversed LSTM 35.85

Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs 36.5
Oracle Rescoring of the Baseline 1000-best lists ∼45

Table 2: Methods that use neural networks together with an SMT system on the WMT’14 English
to French test set (ntst14).

task by a sizeable margin, despite its inability to handle out-of-vocabulary words. The LSTM is
within 0.5 BLEU points of the best WMT’14 result if it is used to rescore the 1000-best list of the
baseline system.

3.7 Performance on long sentences

We were surprised to discover that the LSTM did well on long sentences, which is shown quantita-
tively in figure 3. Table 3 presents several examples of long sentences and their translations.

3.8 Model Analysis
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In the garden , I gave her a card
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She gave me a card in the garden
In the garden , she gave me a card

I was given a card by her in the garden

Figure 2: The figure shows a 2-dimensional PCA projection of the LSTM hidden states that are obtained
after processing the phrases in the figures. The phrases are clustered by meaning, which in these examples is
primarily a function of word order, which would be difficult to capture with a bag-of-words model. Notice that
both clusters have similar internal structure.

One of the attractive features of our model is its ability to turn a sequence of words into a vector
of fixed dimensionality. Figure 2 visualizes some of the learned representations. The figure clearly
shows that the representations are sensitive to the order ofwords, while being fairly insensitive to the

6

(Sutskever et al., 2014)
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Type Sentence
Our model Ulrich UNK , membre du conseil d’ administration du constructeur automobile Audi ,

affirme qu’ il s’ agit d’ une pratique courante depuis des ann´ees pour que les téléphones
portables puissent être collectés avant les réunions duconseil d’ administration afin qu’ ils
ne soient pas utilisés comme appareils d’ écoute à distance .

Truth Ulrich Hackenberg , membre du conseil d’ administration du constructeur automobile Audi ,
déclare que la collecte des téléphones portables avant les réunions du conseil , afin qu’ ils
ne puissent pas être utilisés comme appareils d’ écoute `a distance , est une pratique courante
depuis des années .

Our model “ Les téléphones cellulaires , qui sont vraiment une question , non seulement parce qu’ ils
pourraient potentiellement causer des interférences avec les appareils de navigation , mais
nous savons , selon la FCC , qu’ ils pourraient interférer avec les tours de téléphone cellulaire
lorsqu’ ils sont dans l’ air ” , dit UNK .

Truth “ Les téléphones portables sont véritablement un probl`eme , non seulement parce qu’ ils
pourraient éventuellement créer des interférences avec les instruments de navigation , mais
parce que nous savons , d’ après la FCC , qu’ ils pourraient perturber les antennes-relais de
téléphonie mobile s’ ils sont utilisés à bord ” , a déclaré Rosenker .

Our model Avec la crémation , il y a un “ sentiment de violence contre lecorps d’ un être cher ” ,
qui sera “ réduit à une pile de cendres ” en très peu de tempsau lieu d’ un processus de
décomposition “ qui accompagnera les étapes du deuil ” .

Truth Il y a , avec la crémation , “ une violence faite au corps aimé” ,
qui va être “ réduit à un tas de cendres ” en très peu de temps , et non après un processus de
décomposition , qui “ accompagnerait les phases du deuil ” .

Table 3: A few examples of long translations produced by the LSTM alongside the ground truth
translations. The reader can verify that the translations are sensible using Google translate.
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Figure 3: The left plot shows the performance of our system as a function of sentence length, where the
x-axis corresponds to the test sentences sorted by their length and is marked by the actual sequence lengths.
There is no degradation on sentences with less than 35 words,there is only a minor degradation on the longest
sentences. The right plot shows the LSTM’s performance on sentences with progressively more rare words,
where the x-axis corresponds to the test sentences sorted bytheir “average word frequency rank”.

replacement of an active voice with a passive voice. The two-dimensional projections are obtained
using PCA.

4 Related work

There is a large body of work on applications of neural networks to machine translation. So far,
the simplest and most effective way of applying an RNN-Language Model (RNNLM) [23] or a
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Method test BLEU score (ntst14)
Bahdanau et al. [2] 28.45

Baseline System [29] 33.30
Single forward LSTM, beam size 12 26.17
Single reversed LSTM, beam size 12 30.59

Ensemble of 5 reversed LSTMs, beam size 1 33.00
Ensemble of 2 reversed LSTMs, beam size 12 33.27
Ensemble of 5 reversed LSTMs, beam size 2 34.50
Ensemble of 5 reversed LSTMs, beam size 12 34.81

Table 1: The performance of the LSTM on WMT’14 English to French test set (ntst14). Note that
an ensemble of 5 LSTMs with a beam of size 2 is cheaper than of a single LSTM with a beam of
size 12.

Method test BLEU score (ntst14)
Baseline System [29] 33.30

Cho et al. [5] 34.54
Best WMT’14 result [9] 37.0

Rescoring the baseline 1000-best with a single forward LSTM 35.61
Rescoring the baseline 1000-best with a single reversed LSTM 35.85

Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs 36.5
Oracle Rescoring of the Baseline 1000-best lists ∼45

Table 2: Methods that use neural networks together with an SMT system on the WMT’14 English
to French test set (ntst14).

task by a sizeable margin, despite its inability to handle out-of-vocabulary words. The LSTM is
within 0.5 BLEU points of the best WMT’14 result if it is used to rescore the 1000-best list of the
baseline system.

3.7 Performance on long sentences

We were surprised to discover that the LSTM did well on long sentences, which is shown quantita-
tively in figure 3. Table 3 presents several examples of long sentences and their translations.
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Figure 2: The figure shows a 2-dimensional PCA projection of the LSTM hidden states that are obtained
after processing the phrases in the figures. The phrases are clustered by meaning, which in these examples is
primarily a function of word order, which would be difficult to capture with a bag-of-words model. Notice that
both clusters have similar internal structure.

One of the attractive features of our model is its ability to turn a sequence of words into a vector
of fixed dimensionality. Figure 2 visualizes some of the learned representations. The figure clearly
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The end
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