
EE-559 – Deep learning

9.3. Denoising and variational autoencoders

François Fleuret

https://fleuret.org/ee559/

Sat Dec 8 19:04:09 UTC 2018

ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

Denoising Autoencoders

François Fleuret EE-559 – Deep learning / 9.3. Denoising and variational autoencoders 1 / 24

Vincent et al. (2010) interpret the autoencoder in a probabilistic framework as a
way of building an encoder that maximizes the mutual information between the
input and the latent state.

Let X be a sample, Z = f (X ; θ) its latent representation, and q(x , z) the
distribution of (X ,Z).

We have

argmax
θ

I(X ,Z) = argmax
θ

H(X)−H(X | Z)

= argmax
θ

−H(X | Z)

= argmax
θ

Eq(X ,Z)

[
log q(X | Z)

]
.

However, there is no expression of q(X | Z) in any reasonable setup.

François Fleuret EE-559 – Deep learning / 9.3. Denoising and variational autoencoders 2 / 24

Give (X ,Z) ∼ qθ, for any distribution p we have

Eq(X ,Z)

[
log q(X | Z)

]
≥ Eq(X ,Z)

[
log p(X | Z)

]
.

So we can in particular try to find a “good p”, so that the left term is a good
approximation of the right one.

François Fleuret EE-559 – Deep learning / 9.3. Denoising and variational autoencoders 3 / 24

If we consider the following model for p

p (· | Z = z) = N (g(z; η), σ)

where g is deterministic, we get

Eq(X ,Z)

[
log p(X | Z)

]
= −Eq(X ,Z)

[
‖X − g(Z ; η)‖2

2σ2

]
= −Eq(X ,Z)

[
‖X − g(f (X); η)‖2

2σ2

]
.

If optimizing η makes the bound tight, the final loss is the reconstruction error

argmax
θ

I(X ,Z) ' argmin
θ

(
min
η

1

N

N∑
n=1

‖xn − g(f (xn); η)‖2

)
.

This abstract view of the encoder as “maximizing information” justifies its
use to build generic encoding layers.

François Fleuret EE-559 – Deep learning / 9.3. Denoising and variational autoencoders 4 / 24

In the perspective of building a good feature representation, just retaining
information is not enough, otherwise the identity would be a good choice.

In their work, Vincent et al. propose to degrade the signal with noise before
feeding it to the encoder, but to keep the MSE to the original signal.

This makes the encoder retain information about structures beyond local noise.

François Fleuret EE-559 – Deep learning / 9.3. Denoising and variational autoencoders 5 / 24

V INCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

Figure 6: Weight decay vs. Gaussian noise. We show typical filters learnt from natural image
patches in the over-complete case (200 hidden units).Left: regular autoencoder with
weight decay. We tried a wide range of weight-decay values and learningrates: filters
never appeared to capture a more interesting structure than what is shownhere. Note
that some local blob detectors are recovered compared to using no weightdecay at all
(Figure 5 right).Right: a denoising autoencoder with additive Gaussian noise (σ = 0.5)
learns Gabor-like local oriented edge detectors. Clearly the filters learntare qualitatively
very different in the two cases.

yielded a mixture of edge detectors and grating filters. Clearly different corruption types and levels
can yield qualitatively different filters. But it is interesting to note that all three noise types we
experimented with were able to yield some potentially useful edge detectors.

5.2 Feature Detectors Learnt from Handwritten Digits

We also trained denoising autoencoders on the 28× 28 gray-scale images of handwritten digits
from the MNIST data set. For this experiment, we used denoising autoencoders with tied weights,
cross-entropy reconstruction error, and zero-masking noise. The goal was to better understand the
qualitative effect of the noise level. So we trained several denoising autoencoders, all starting from
the same initial random point in weight space, butwith different noise levels.Figure 8 shows some
of the resulting filters learnt and how they are affected as we increase thelevel of corruption. With
0% corruption, the majority of the filters appear totally random, with only a few that specialize as
little ink blob detectors. With increased noise levels, a much larger proportion of interesting (visibly
non random and with a clear structure) feature detectors are learnt. These include local oriented
stroke detectors and detectors of digit parts such as loops. It was to be expected that denoising a
more corrupted input requires detecting bigger, less local structures: the denoising auto-encoder
must rely on longer range statistical dependencies and pool evidence from a larger subset of pixels.
Interestingly, filters that start from the same initial random weight vector often look like they “grow”
from random, to local blob detector, to slightly bigger structure detectors such as a stroke detector,
as we use increased noise levels. By “grow” we mean that the slightly largerstructure learnt at a
higher noise level often appears related to the smaller structure obtained atlower noise levels, in
that they share about the same position and orientation.

3388

(Vincent et al., 2010)

François Fleuret EE-559 – Deep learning / 9.3. Denoising and variational autoencoders 6 / 24

STACKED DENOISING AUTOENCODERS

Figure 7: Filters obtained on natural image patches by denoising autoencoders using other noise
types.Left: with 10% salt-and-pepper noise, we obtain oriented Gabor-like filters. They
appear slightly less localized than when using Gaussian noise (contrast withFigure 6
right). Right: with 55% zero-masking noise we obtain filters that look like oriented
gratings. For the three considered noise types, denoising training appears to learn filters
that capture meaningful natural image statistics structure.

6. Experiments on Stacked Denoising Autoencoders

In this section, we evaluate denoising autoencoders as a pretraining strategy for building deep net-
works, using the stacking procedure that we described in Section 3.5. Weshall mainly compare the
classification performance of networks pretrained by stacking denoisingautoencoders (SDAE), ver-
sus stacking regular autoencoders (SAE), versus stacking restrictedBoltzmann machines (DBN),
on a benchmark of classification problems.

6.1 Considered Classification Problems and Experimental Methodology

We considered 10 classification problems, the details of which are listed in Table 1. They consist
of:

• The standard MNIST digit classification problem with 60000 training examples.

• The eight benchmark image classification problems used in Larochelle et al. (2007) which in-
clude more challenging variations of the MNIST digit classification problem (all with 10000
training examples), as well as three artificial 28× 28 binary image classification tasks.11

These problems were designed to be particularly challenging to current generic learning al-
gorithms (Larochelle et al., 2007). They are illustrated in Figure 9.

• A variation of thetzanetakisaudio genre classification data set (Bergstra, 2006) which con-
tains 10000 three-second audio clips, equally distributed among 10 musical genres: blues,
classical, country, disco, hiphop, pop, jazz, metal, reggae and rock. Each example in the set

11. The data sets for this benchmark are available athttp://www.iro.umontreal.ca/ ˜ lisa/icml2007 .

3389

(Vincent et al., 2010)

François Fleuret EE-559 – Deep learning / 9.3. Denoising and variational autoencoders 7 / 24

Vincent et al. build deep MLPs whose layers are initialized successively as
encoders trained within a noisy autoencoder.

A final classifying layer is added and the full structure can be fine-tuned.

François Fleuret EE-559 – Deep learning / 9.3. Denoising and variational autoencoders 8 / 24

V INCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

Data Set SVMrb f DBN-1 SAE-3 DBN-3 SDAE-3 (ν)

MNIST 1.40±0.23 1.21±0.21 1.40±0.23 1.24±0.22 1.28±0.22 (25%)
basic 3.03±0.15 3.94±0.17 3.46±0.16 3.11±0.15 2.84±0.15 (10%)
rot 11.11±0.28 14.69±0.31 10.30±0.27 10.30±0.27 9.53±0.26 (25%)
bg-rand 14.58±0.31 9.80±0.26 11.28±0.28 6.73±0.22 10.30±0.27 (40%)
bg-img 22.61±0.37 16.15±0.32 23.00±0.37 16.31±0.32 16.68±0.33 (25%)
bg-img-rot 55.18±0.44 52.21±0.44 51.93±0.44 47.39±0.44 43.76±0.43 (25%)
rect 2.15±0.13 4.71±0.19 2.41±0.13 2.60±0.14 1.99±0.12 (10%)
rect-img 24.04±0.37 23.69±0.37 24.05±0.37 22.50±0.37 21.59±0.36 (25%)
convex 19.13±0.34 19.92±0.35 18.41±0.34 18.63±0.34 19.06±0.34 (10%)
tzanetakis 14.41±2.18 18.07±1.31 16.15±1.95 18.38±1.64 16.02±1.04(0.05)

Table 3: Comparison of stacked denoising autoencoders (SDAE-3) with other models. Test error
rate on all considered classification problems is reported together with a 95%confidence
interval. Best performer is in bold, as well as those for which confidenceintervals overlap.
SDAE-3 appears to achieve performance superior or equivalent to thebest other model on
all problems exceptbg-rand. For SDAE-3, we also indicate the fractionν of corrupted
input components, or in case oftzanetakis, the standard deviation of the Gaussian noise, as
chosen by proper model selection. Note that SAE-3 is equivalent to SDAE-3 with ν = 0%.

grained series of experiments, we chose to concentrate on the hardest of the considered problems,
that is, the one with the most factors of variation:bg-img-rot.

We first examine how the proposed network training strategy behaves as we increase the capacity
of the model both in breadth (number of neurons per layer) and in depth (number of hidden layers).
Figure 10 shows the evolution of the performance as we increase the number of hidden layers from
1 to 3, for three different network training strategies: without any pretraining (standard MLP),
with ordinary autoencoder pretraining (SAE) and with denoising autoencoder pretraining (SDAE).
We clearly see a strict ordering: denoising pretraining being better than autoencoder pretraining
being better than no pretraining. The advantage appears to increase with the number of layers (note
that without pretraining it seems impossible to successfully train a 3 hidden layer network) and
with the number of hidden units. This general behavior is a typical illustration of what is gained
by pretraining deep networks with a good unsupervised criterion, and appears to be common to
several pretraining strategies. We refer the reader to Erhan et al. (2010) for an empirical study
and discussion regarding possible explanations for the phenomenon, centered on the observation of
regularizationeffects (we exploit the hypothesis that features ofX that help to captureP(X) also
help to captureP(Y|X)) andoptimizationeffects (unsupervised pre-training initializes parameters
near a betterlocal minimumof generalizationerror).

Notice that in tuning the hyperparameters for all classification performances so far reported, we
considered only a coarse choice of noise levelsν (namely 0%, 10%, 25%, or 40% of zero-masking
corruption for the image classification problems). Clearly it was not necessary to pick the noise
level very precisely to obtain good performances. In Figure 11 we examine in more details the
influence of the level of corruptionν using a more fine-grained grid for problembg-img-rot. We

3394

(Vincent et al., 2010)

François Fleuret EE-559 – Deep learning / 9.3. Denoising and variational autoencoders 9 / 24

Variational Autoencoders

François Fleuret EE-559 – Deep learning / 9.3. Denoising and variational autoencoders 10 / 24

Coming back to generating a signal, instead of training an autoencoder and
modeling the distribution of Z , we can try an alternative approach:

Impose a distribution for Z and then train a decoder g so that g(Z) matches
the training data.

François Fleuret EE-559 – Deep learning / 9.3. Denoising and variational autoencoders 11 / 24

We consider the following two distributions:

• q is the distribution on X × Rd of a pair (X ,Z) composed of a sample X
taken from the data distribution and the output of the encoder on it,

• p is the distribution on X × Rd of a pair (X ,Z) composed of an encoding
state Z ∼ N (0, I) and the output of the decoder g on it.

We should ideally look for the g that maximizes the log-likelihood

1

N

∑
n

log p(xn) = Êq(X)

[
log p(X)

]
.

However, while we can sample z and compute g(z), we cannot compute
p(x) for a given x, and even less compute its derivatives.

François Fleuret EE-559 – Deep learning / 9.3. Denoising and variational autoencoders 12 / 24

The Variational Autoencoder proposed by Kingma and Welling (2013) relies
on a tractable approximation of this log-likelihood.

Note that their framework involves stochastic encoder f , and decoder g , whose
outputs depend on both their inputs and additional randomness.

François Fleuret EE-559 – Deep learning / 9.3. Denoising and variational autoencoders 13 / 24

Remember that q(X) is the data distribution, and q(Z | X = x) is the
distribution of the latent encoding f (x). We want to maximize

Eq(X)

[
log p(X)

]
,

or equivalently minimize

Eq(X)

[
log q(X)− log p(X)

]
= DKL(q(X) ‖ p(X))

≤ DKL(q(X ,Z) ‖ p(X ,Z)) .

We will minimize this latter bound, that can be rewritten as

DKL(q(X ,Z) ‖ p(X ,Z)) =

Eq(X)

[
DKL(q(Z | X) ‖ p(Z))

]
− Eq(X ,Z)

[
log p(X | Z)

]
+H(q(X)).

François Fleuret EE-559 – Deep learning / 9.3. Denoising and variational autoencoders 14 / 24

Kingma and Welling use Gaussians with diagonal covariance for both q(Z | X)
and p(X | Z):

• the encoder maps a data point from the signal space Rc to [the parameters
of] a Gaussian in the latent space Rd

f : Rc → R2d

x 7→
(
µf1, . . . , µ

f
d , σ

f
1 , . . . , σ

f
d

)
,

• the decoder maps a latent value from Rd to [the parameters of] a Gaussian
in the signal space Rc

g : Rd → R2c

z 7→
(
µg1 , . . . , µ

g
c , σ

g
1 , . . . , σ

g
c

)
.

François Fleuret EE-559 – Deep learning / 9.3. Denoising and variational autoencoders 15 / 24

We have to minimize

ℒ = Êq(X)

[
DKL (q(Z | X) ‖ p(Z))

]
− Êq(X ,Z)

[
log p(X | Z)

]
.

The first term is the average of

DKL (q(Z | X = x) ‖ p(Z)) = −
1

2

∑
d

(
1 + 2 log σf

d (x)−
(
µfd (x)

)2
−
(
σf
d (x)

)2
)
.

over the xns.

The second term of ℒ is the average of

− log p(X = x | Z = z) =
1

2

∑
d

(
log 2π + 2 log σg

d (z) +
(xd − µgd (z))2(

σg
d (z)

)2

)

over the xn, with one zn sampled for each (could be more)

zn ∼ N
(
µf (xn), σf (xn)

)
, n = 1, . . . ,N.

François Fleuret EE-559 – Deep learning / 9.3. Denoising and variational autoencoders 16 / 24

Original space X

Latent space ℱ

f

g

François Fleuret EE-559 – Deep learning / 9.3. Denoising and variational autoencoders 17 / 24

Regarding implementation: the encoder now maps to twice the number of
dimensions, which corresponds to the µf s and log

(
(σf)2

)
s.

Also, as in Kingma and Welling (2013), we use a fixed variance of 1 for the
decoder. So it outputs the µg s alone, and its dimension remains unchanged.

François Fleuret EE-559 – Deep learning / 9.3. Denoising and variational autoencoders 18 / 24

The first term of the loss is the average of

DKL (q(Z | X = x) ‖ p(Z)) = −
1

2

∑
d

(
1 + 2 log σf

d (x)−
(
µfd (x)

)2
−
(
σf
d (x)

)2
)
.

over the xn.

This can be implemented as

param_f = model.encode(input)
mu_f, logvar_f = param_f.split(param_f.size(1)//2, 1)

kl = - 0.5 * (1 + logvar_f - mu_f.pow(2) - logvar_f.exp())
kl_loss = kl.sum() / input.size(0)

François Fleuret EE-559 – Deep learning / 9.3. Denoising and variational autoencoders 19 / 24

Since we use a constant variance of 1 for the decoder, the second term of ℒ
becomes the average of

− log p(X = x | Z = z) =
1

2

∑
d

(xd − µgd (z))2 + cst

over the xn, with one zn sampled for each, i.e.

zn ∼ N
(
µf (xn), σf (xn)

)
, n = 1, . . . ,N.

This can be implemented as

std_f = torch.exp(0.5 * logvar_f)
z = torch.empty_like(mu_f).normal_() * std_f + mu_f
output = model.decode(z)

fit = 0.5 * (output - input).pow(2)
fit_loss = fit.sum() / input.size(0)

François Fleuret EE-559 – Deep learning / 9.3. Denoising and variational autoencoders 20 / 24

We had for the standard autoencoder

z = model.encode(input)
output = model.decode(z)
loss = 0.5 * (output - input).pow(2).sum() / input.size(0)

and putting everything together we get for the VAE

param_f = model.encode(input)
mu_f, logvar_f = param_f.split(param_f.size(1)//2, 1)

kl = - 0.5 * (1 + logvar_f - mu_f.pow(2) - logvar_f.exp())
kl_loss = kl.sum() / input.size(0)

std_f = torch.exp(0.5 * logvar_f)
z = torch.empty_like(mu_f).normal_() * std_f + mu_f
output = model.decode(z)

fit = 0.5 * (output - input).pow(2)
fit_loss = fit.sum() / input.size(0)

loss = kl_loss + fit_loss

During inference we do not sample, and instead use µf and µg as prediction.

François Fleuret EE-559 – Deep learning / 9.3. Denoising and variational autoencoders 21 / 24

Original

Autoencoder reconstruction (d = 32)

Variational Autoencoder reconstruction (d = 32)

François Fleuret EE-559 – Deep learning / 9.3. Denoising and variational autoencoders 22 / 24

We can look at two latent features to check that they are Normal for the VAE.

AE

-10

-5

 0

 5

 10

-15 -10 -5 0 5 10 15

VAE N (0, 1)

-10

-5

 0

 5

 10

-15 -10 -5 0 5 10 15
-10

-5

 0

 5

 10

-15 -10 -5 0 5 10 15

François Fleuret EE-559 – Deep learning / 9.3. Denoising and variational autoencoders 23 / 24

Autoencoder sampling (d = 32)

Variational Autoencoder sampling (d = 32)

François Fleuret EE-559 – Deep learning / 9.3. Denoising and variational autoencoders 24 / 24

References

D. P. Kingma and M. Welling. Auto-encoding variational bayes. CoRR, abs/1312.6114,
2013.

P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked denoising
autoencoders: Learning useful representations in a deep network with a local denoising
criterion. Journal of Machine Learning Research (JMLR), 11:3371–3408, 2010.

	Denoising Autoencoders
	Variational Autoencoders

