
EE-559 – Deep learning

7.2. Networks for image classification

François Fleuret

https://fleuret.org/ee559/

Fri Nov 16 22:58:34 UTC 2018

ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

Image classification, standard convnets

François Fleuret EE-559 – Deep learning / 7.2. Networks for image classification 1 / 36

The most standard networks for image classification are the LeNet family (leCun
et al., 1998), and its modern extensions, among which AlexNet (Krizhevsky
et al., 2012) and VGGNet (Simonyan and Zisserman, 2014).

They share a common structure of several convolutional layers seen as a feature
extractor, followed by fully connected layers seen as a classifier.

The performance of AlexNet was a wake-up call for the computer vision
community, as it vastly out-performed other methods in spite of its simplicity.

Recent advances rely on moving from standard convolutional layers to local
complex architectures to reduce the model size.

François Fleuret EE-559 – Deep learning / 7.2. Networks for image classification 2 / 36

torchvision.models provides a collection of reference networks for computer
vision, e.g.:

import torchvision
alexnet = torchvision.models.alexnet()

The trained models can be obtained by passing pretrained = True to the
constructor(s). This may involve an heavy download given there size.

B The networks from PyTorch listed in the coming slides may differ slightly
from the reference papers which introduced them historically.

François Fleuret EE-559 – Deep learning / 7.2. Networks for image classification 3 / 36

LeNet5 (LeCun et al., 1989). 10 classes, input 1× 28× 28.

(features): Sequential (
(0): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
(1): ReLU (inplace)
(2): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
(3): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(4): ReLU (inplace)
(5): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))

)

(classifier): Sequential (
(0): Linear (256 -> 120)
(1): ReLU (inplace)
(2): Linear (120 -> 84)
(3): ReLU (inplace)
(4): Linear (84 -> 10)

)

François Fleuret EE-559 – Deep learning / 7.2. Networks for image classification 4 / 36

Alexnet (Krizhevsky et al., 2012). 1, 000 classes, input 3× 224× 224.

(features): Sequential (
(0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
(1): ReLU (inplace)
(2): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))
(3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(4): ReLU (inplace)
(5): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))
(6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): ReLU (inplace)
(8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(9): ReLU (inplace)
(10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(11): ReLU (inplace)
(12): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))

)

(classifier): Sequential (
(0): Dropout (p = 0.5)
(1): Linear (9216 -> 4096)
(2): ReLU (inplace)
(3): Dropout (p = 0.5)
(4): Linear (4096 -> 4096)
(5): ReLU (inplace)
(6): Linear (4096 -> 1000)

)

François Fleuret EE-559 – Deep learning / 7.2. Networks for image classification 5 / 36

Krizhevsky et al. used data augmentation during training to reduce over-fitting.

They generated 2, 048 samples from every original training example through two
classes of transformations:

• crop a 224× 224 image at a random position in the original 256× 256,
and randomly reflect it horizontally,

• apply a color transformation using a PCA model of the color distribution.

During test the prediction is averaged over five random crops and their
horizontal reflections.

François Fleuret EE-559 – Deep learning / 7.2. Networks for image classification 6 / 36

VGGNet19 (Simonyan and Zisserman, 2014). 1, 000 classes, input
3× 224× 224. 16 convolutional layers + 3 fully connected layers.

(features): Sequential (

(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(1): ReLU (inplace)

(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(3): ReLU (inplace)

(4): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))

(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(6): ReLU (inplace)

(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(8): ReLU (inplace)

(9): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))

(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(11): ReLU (inplace)

(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(13): ReLU (inplace)

(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(15): ReLU (inplace)

(16): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(17): ReLU (inplace)

(18): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))

(19): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(20): ReLU (inplace)

(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(22): ReLU (inplace)

(23): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(24): ReLU (inplace)

(25): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(26): ReLU (inplace)

(27): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))

/.../

François Fleuret EE-559 – Deep learning / 7.2. Networks for image classification 7 / 36

VGGNet19 (cont.)

(classifier): Sequential (
(0): Linear (25088 -> 4096)
(1): ReLU (inplace)
(2): Dropout (p = 0.5)
(3): Linear (4096 -> 4096)
(4): ReLU (inplace)
(5): Dropout (p = 0.5)
(6): Linear (4096 -> 1000)

)

François Fleuret EE-559 – Deep learning / 7.2. Networks for image classification 8 / 36

We can illustrate the convenience of these pre-trained models on a simple
image-classification problem.

To be sure this picture did not appear in the training data, it was not taken
from the web.

François Fleuret EE-559 – Deep learning / 7.2. Networks for image classification 9 / 36

import PIL, torch, torchvision

Imagenet class names
class_names = eval(open(’imagenet1000_clsid_to_human.txt’, ’r’).read())

Load and normalize the image
to_tensor = torchvision.transforms.ToTensor()
img = to_tensor(PIL.Image.open(’example_images/blacklab.jpg’))
img = img.view(1, img.size(0), img.size(1), img.size(2))
img = 0.5 + 0.5 * (img - img.mean()) / img.std()

Load and evaluate the network
alexnet = torchvision.models.alexnet(pretrained = True)
alexnet.eval()

output = alexnet(img)

Prints the classes
scores, indexes = output.view(-1).sort(descending = True)

for k in range(15):
print(’%.02f’ % scores[k].item(), class_names[indexes[k].item()])

François Fleuret EE-559 – Deep learning / 7.2. Networks for image classification 10 / 36

12.26 Weimaraner

10.95 Chesapeake Bay retriever

10.87 Labrador retriever

10.10 Staffordshire bullterrier, Staffordshire bull terrier

9.55 flat-coated retriever

9.40 Italian greyhound

9.31 American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier

9.12 Great Dane

8.94 German short-haired pointer

8.53 Doberman, Doberman pinscher

8.35 Rottweiler

8.25 kelpie

8.24 barrow, garden cart, lawn cart, wheelbarrow

8.12 bucket, pail

8.07 soccer ball

Weimaraner Chesapeake Bay retriever

François Fleuret EE-559 – Deep learning / 7.2. Networks for image classification 11 / 36

Fully convolutional networks

François Fleuret EE-559 – Deep learning / 7.2. Networks for image classification 12 / 36

In many applications, standard convolutional networks are made fully
convolutional by converting their fully connected layers to convolutional ones.

x(l)

x(l)

H

W

C

x(l+2)

w (l+2)

x(l+1)

w (l+1)

x(l+1)

HWC

HWC

Reshape

x(l+2)

w (l+2)

w (l+1)

H

W

C

x(l+1)x(l+1)

x(l+1) x(l+2)

~ ~

François Fleuret EE-559 – Deep learning / 7.2. Networks for image classification 13 / 36

x(l)

x(l)

H

W

C

x(l+2)

w (l+2)

x(l+1)

w (l+1)

x(l+1)

HWC

HWC
Reshape

x(l+2)

w (l+2)

w (l+1)

H

W

C

x(l+1)

x(l+1)

x(l+1) x(l+2)

~ ~

François Fleuret EE-559 – Deep learning / 7.2. Networks for image classification 14 / 36

This “convolutionization” does not change anything if the input size is such
that the output has a single spatial cell, but it fully re-uses computation to
get a prediction at multiple locations when the input is larger.

x(l)

x(l)

H

W

C

x(l+2)

w (l+2)

x(l+1)

w (l+1)

x(l+1)

HWC

HWC
Reshape

x(l+2)

w (l+2)

w (l+1)

H

W

C

x(l+1)

x(l+1)

x(l+1) x(l+2)

~ ~

François Fleuret EE-559 – Deep learning / 7.2. Networks for image classification 15 / 36

We can write a routine that transforms a series of layers from a standard
convnets to make it fully convolutional:

def convolutionize(layers, input_size):
result_layers = []
x = torch.zeros((1,) + input_size)

for m in layers:
if isinstance(m, torch.nn.Linear):

n = torch.nn.Conv2d(in_channels = x.size(1),
out_channels = m.weight.size(0),
kernel_size = (x.size(2), x.size(3)))

with torch.no_grad():
n.weight.view(-1).copy_(m.weight.view(-1))
n.bias.view(-1).copy_(m.bias.view(-1))

m = n

result_layers.append(m)
x = m(x)

return result_layers

B This function makes the [strong and disputable] assumption that only
nn.Linear has to be converted.

François Fleuret EE-559 – Deep learning / 7.2. Networks for image classification 16 / 36

To apply this to AlexNet

model = torchvision.models.alexnet(pretrained = True)
print(model)

layers = list(model.features) + list(model.classifier)

model = nn.Sequential(*convolutionize(layers, (3, 224, 224)))
print(model)

François Fleuret EE-559 – Deep learning / 7.2. Networks for image classification 17 / 36

AlexNet (
(features): Sequential (

(0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
(1): ReLU (inplace)
(2): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))
(3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(4): ReLU (inplace)
(5): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))
(6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): ReLU (inplace)
(8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(9): ReLU (inplace)
(10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(11): ReLU (inplace)
(12): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))

)
(classifier): Sequential (

(0): Dropout (p = 0.5)
(1): Linear (9216 -> 4096)
(2): ReLU (inplace)
(3): Dropout (p = 0.5)
(4): Linear (4096 -> 4096)
(5): ReLU (inplace)
(6): Linear (4096 -> 1000)

)
)

François Fleuret EE-559 – Deep learning / 7.2. Networks for image classification 18 / 36

Sequential (
(0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
(1): ReLU (inplace)
(2): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))
(3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(4): ReLU (inplace)
(5): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))
(6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): ReLU (inplace)
(8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(9): ReLU (inplace)
(10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(11): ReLU (inplace)
(12): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))
(13): Dropout (p = 0.5)
(14): Conv2d(256, 4096, kernel_size=(6, 6), stride=(1, 1))
(15): ReLU (inplace)
(16): Dropout (p = 0.5)
(17): Conv2d(4096, 4096, kernel_size=(1, 1), stride=(1, 1))
(18): ReLU (inplace)
(19): Conv2d(4096, 1000, kernel_size=(1, 1), stride=(1, 1))

)

François Fleuret EE-559 – Deep learning / 7.2. Networks for image classification 19 / 36

In their “overfeat” approach, Sermanet et al. (2013) combined this with a stride
1 final max-pooling to get multiple predictions.

Input image

Conv layers

Max-pooling

1000d

FC layers

Input image

Conv layers

Max-pooling

1000d

FC layers

AlexNet random cropping Overfeat dense max-pooling

Doing so, they could afford parsing the scene at 6 scales to improve invariance.

François Fleuret EE-559 – Deep learning / 7.2. Networks for image classification 20 / 36

This “convolutionization” has a practical consequence, as we can now re-use
classification networks for dense prediction without re-training.

Also, and maybe more importantly, it blurs the conceptual boundary between
“features” and “classifier” and leads to an intuitive understanding of convnet
activations as gradually transitioning from appearance to semantic.

François Fleuret EE-559 – Deep learning / 7.2. Networks for image classification 21 / 36

In the case of a large output prediction map, a final prediction can be obtained
by averaging the final output map channel-wise.

If the last layer is linear, the averaging can be done first, as in the residual
networks (He et al., 2015).

François Fleuret EE-559 – Deep learning / 7.2. Networks for image classification 22 / 36

Image classification, network in network

François Fleuret EE-559 – Deep learning / 7.2. Networks for image classification 23 / 36

Lin et al. (2013) re-interpreted a convolution filter as a one-layer perceptron,
and extended it with an “MLP convolution” (aka “network in network”) to
improve the capacity vs. parameter ratio.

(a) Linear convolution layer

 .
. .

 .
. .

(b) Mlpconv layer

Figure 1: Comparison of linear convolution layer and mlpconv layer. The linear convolution layer
includes a linear filter while the mlpconv layer includes a micro network (we choose the multilayer
perceptron in this paper). Both layers map the local receptive field to a confidence value of the latent
concept.

over the input in a similar manner as CNN and are then fed into the next layer. The overall structure
of the NIN is the stacking of multiple mlpconv layers. It is called “Network In Network” (NIN) as
we have micro networks (MLP), which are composing elements of the overall deep network, within
mlpconv layers,

Instead of adopting the traditional fully connected layers for classification in CNN, we directly
output the spatial average of the feature maps from the last mlpconv layer as the confidence of
categories via a global average pooling layer, and then the resulting vector is fed into the softmax
layer. In traditional CNN, it is difficult to interpret how the category level information from the
objective cost layer is passed back to the previous convolution layer due to the fully connected
layers which act as a black box in between. In contrast, global average pooling is more meaningful
and interpretable as it enforces correspondance between feature maps and categories, which is made
possible by a stronger local modeling using the micro network. Furthermore, the fully connected
layers are prone to overfitting and heavily depend on dropout regularization [4] [5], while global
average pooling is itself a structural regularizer, which natively prevents overfitting for the overall
structure.

2 Convolutional Neural Networks

Classic convolutional neuron networks [1] consist of alternatively stacked convolutional layers and
spatial pooling layers. The convolutional layers generate feature maps by linear convolutional filters
followed by nonlinear activation functions (rectifier, sigmoid, tanh, etc.). Using the linear rectifier
as an example, the feature map can be calculated as follows:

fi,j,k = max(wT
k xi,j , 0). (1)

Here (i, j) is the pixel index in the feature map, xij stands for the input patch centered at location
(i, j), and k is used to index the channels of the feature map.

This linear convolution is sufficient for abstraction when the instances of the latent concepts are
linearly separable. However, representations that achieve good abstraction are generally highly non-
linear functions of the input data. In conventional CNN, this might be compensated by utilizing
an over-complete set of filters [6] to cover all variations of the latent concepts. Namely, individual
linear filters can be learned to detect different variations of a same concept. However, having too
many filters for a single concept imposes extra burden on the next layer, which needs to consider all
combinations of variations from the previous layer [7]. As in CNN, filters from higher layers map
to larger regions in the original input. It generates a higher level concept by combining the lower
level concepts from the layer below. Therefore, we argue that it would be beneficial to do a better
abstraction on each local patch, before combining them into higher level concepts.

In the recent maxout network [8], the number of feature maps is reduced by maximum pooling
over affine feature maps (affine feature maps are the direct results from linear convolution without

2

(Lin et al., 2013)

As for the fully convolutional networks, such local MLPs can be implemented
with 1× 1 convolutions.

François Fleuret EE-559 – Deep learning / 7.2. Networks for image classification 24 / 36

The same notion was generalized by Szegedy et al. (2015) for their GoogLeNet,
through the use of module combining convolutions at multiple scales to let the
optimal ones be picked during training.

1x1 convolutions 3x3 convolutions 5x5 convolutions

Filter
concatenation

Previous layer

3x3 max pooling

(a) Inception module, naı̈ve version

1x1 convolutions

3x3 convolutions 5x5 convolutions

Filter
concatenation

Previous layer

3x3 max pooling1x1 convolutions 1x1 convolutions

1x1 convolutions

(b) Inception module with dimension reductions

Figure 2: Inception module

increase in the number of outputs from stage to stage. Even while this architecture might cover the
optimal sparse structure, it would do it very inefficiently, leading to a computational blow up within
a few stages.

This leads to the second idea of the proposed architecture: judiciously applying dimension reduc-
tions and projections wherever the computational requirements would increase too much otherwise.
This is based on the success of embeddings: even low dimensional embeddings might contain a lot
of information about a relatively large image patch. However, embeddings represent information in
a dense, compressed form and compressed information is harder to model. We would like to keep
our representation sparse at most places (as required by the conditions of [2]) and compress the
signals only whenever they have to be aggregated en masse. That is, 1×1 convolutions are used to
compute reductions before the expensive 3×3 and 5×5 convolutions. Besides being used as reduc-
tions, they also include the use of rectified linear activation which makes them dual-purpose. The
final result is depicted in Figure 2(b).

In general, an Inception network is a network consisting of modules of the above type stacked upon
each other, with occasional max-pooling layers with stride 2 to halve the resolution of the grid. For
technical reasons (memory efficiency during training), it seemed beneficial to start using Inception
modules only at higher layers while keeping the lower layers in traditional convolutional fashion.
This is not strictly necessary, simply reflecting some infrastructural inefficiencies in our current
implementation.

One of the main beneficial aspects of this architecture is that it allows for increasing the number of
units at each stage significantly without an uncontrolled blow-up in computational complexity. The
ubiquitous use of dimension reduction allows for shielding the large number of input filters of the
last stage to the next layer, first reducing their dimension before convolving over them with a large
patch size. Another practically useful aspect of this design is that it aligns with the intuition that
visual information should be processed at various scales and then aggregated so that the next stage
can abstract features from different scales simultaneously.

The improved use of computational resources allows for increasing both the width of each stage
as well as the number of stages without getting into computational difficulties. Another way to
utilize the inception architecture is to create slightly inferior, but computationally cheaper versions
of it. We have found that all the included the knobs and levers allow for a controlled balancing of
computational resources that can result in networks that are 2− 3× faster than similarly performing
networks with non-Inception architecture, however this requires careful manual design at this point.

5 GoogLeNet

We chose GoogLeNet as our team-name in the ILSVRC14 competition. This name is an homage to
Yann LeCuns pioneering LeNet 5 network [10]. We also use GoogLeNet to refer to the particular
incarnation of the Inception architecture used in our submission for the competition. We have also
used a deeper and wider Inception network, the quality of which was slightly inferior, but adding it
to the ensemble seemed to improve the results marginally. We omit the details of that network, since
our experiments have shown that the influence of the exact architectural parameters is relatively

5

(Szegedy et al., 2015)

François Fleuret EE-559 – Deep learning / 7.2. Networks for image classification 25 / 36

Szegedy et al. (2015) also introduce the idea of auxiliary classifiers to help the
propagation of the gradient in the early layers.

This is motivated by the reasonable performance of shallow networks that
indicates early layers already encode informative and invariant features.

François Fleuret EE-559 – Deep learning / 7.2. Networks for image classification 26 / 36

The resulting GoogLeNet has 12 times less parameters than AlexNet and is
more accurate on ILSVRC14 (Szegedy et al., 2015).

in
p
u
t

C
o
n
v

7
x
7
+
2
(S
)

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

L
o
ca
lR
e
sp
N
o
rm

C
o
n
v

1
x
1
+
1
(V
)

C
o
n
v

3
x
3
+
1
(S
)

L
o
ca
lR
e
sp
N
o
rm

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

A
v
e
ra
g
e
P
o
o
l

5
x
5
+
3
(V
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

A
v
e
ra
g
e
P
o
o
l

5
x
5
+
3
(V
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

A
v
e
ra
g
e
P
o
o
l

7
x
7
+
1
(V
)

F
C

C
o
n
v

1
x
1
+
1
(S
)

F
C

F
C

S
o
ftm

a
x
A
ctiv

a
tio

n

so
ftm

a
x
0

C
o
n
v

1
x
1
+
1
(S
)

F
C

F
C

S
o
ftm

a
x
A
ctiv

a
tio

n

so
ftm

a
x
1

S
o
ftm

a
x
A
ctiv

a
tio

n

so
ftm

a
x
2

Figure
3:G

oogL
eN

etnetw
ork

w
ith

allthe
bells

and
w

histles

7

(Szegedy et al., 2015)

It was later extended with techniques we are going to see in the next slides:
batch-normalization (Ioffe and Szegedy, 2015) and pass-through à la
resnet (Szegedy et al., 2016).

François Fleuret EE-559 – Deep learning / 7.2. Networks for image classification 27 / 36

Image classification, residual networks

François Fleuret EE-559 – Deep learning / 7.2. Networks for image classification 28 / 36

We already saw the structure of the residual networks and how well they
perform on CIFAR10 (He et al., 2015).

The default residual block proposed by He et al. is of the form

. . .
Conv

3 × 3

64→ 64

BN ReLU
64

Conv

3 × 3

64→ 64

BN + ReLU . . .
64

and as such requires 2× (3× 3× 64 + 1)× 64 ' 73k parameters.

François Fleuret EE-559 – Deep learning / 7.2. Networks for image classification 29 / 36

To apply the same architecture to ImageNet, more channels are required, e.g.

. . .
Conv

3 × 3

256→ 256

BN ReLU
256

Conv

3 × 3

256→ 256

BN + ReLU . . .
256

However, such a block requires 2× (3× 3× 256 + 1)× 256 ' 1.2m parameters.

They mitigated that requirement with what they call a bottleneck block:

. . .
Conv

1 × 1

256→ 64

BN ReLU
256

Conv

3 × 3

64→ 64

BN ReLU

Conv

1 × 1

64→ 256

BN + ReLU . . .
256

256× 64 + (3× 3× 64 + 1)× 64 + 64× 256 ' 70k parameters.

The encoding pushed between blocks is high-dimensional, but the “contextual
reasoning” in convolutional layers is done on a simpler feature representation.

François Fleuret EE-559 – Deep learning / 7.2. Networks for image classification 30 / 36

layer name output size 18-layer 34-layer 50-layer 101-layer 152-layer
conv1 112×112 7×7, 64, stride 2

conv2 x 56×56

3×3 max pool, stride 2
[

3×3, 64
3×3, 64

]
×2

[
3×3, 64
3×3, 64

]
×3




1×1, 64
3×3, 64

1×1, 256


×3




1×1, 64
3×3, 64

1×1, 256


×3




1×1, 64
3×3, 64

1×1, 256


×3

conv3 x 28×28
[

3×3, 128
3×3, 128

]
×2

[
3×3, 128
3×3, 128

]
×4




1×1, 128
3×3, 128
1×1, 512


×4




1×1, 128
3×3, 128
1×1, 512


×4




1×1, 128
3×3, 128
1×1, 512


×8

conv4 x 14×14
[

3×3, 256
3×3, 256

]
×2

[
3×3, 256
3×3, 256

]
×6




1×1, 256
3×3, 256
1×1, 1024


×6




1×1, 256
3×3, 256
1×1, 1024


×23




1×1, 256
3×3, 256

1×1, 1024


×36

conv5 x 7×7
[

3×3, 512
3×3, 512

]
×2

[
3×3, 512
3×3, 512

]
×3




1×1, 512
3×3, 512
1×1, 2048


×3




1×1, 512
3×3, 512

1×1, 2048


×3




1×1, 512
3×3, 512
1×1, 2048


×3

1×1 average pool, 1000-d fc, softmax
FLOPs 1.8×109 3.6×109 3.8×109 7.6×109 11.3×109

Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Down-
sampling is performed by conv3 1, conv4 1, and conv5 1 with a stride of 2.

0 10 20 30 40 50
20

30

40

50

60

iter. (1e4)

er
ro

r
(%

)

plain-18
plain-34

0 10 20 30 40 50
20

30

40

50

60

iter. (1e4)

er
ro

r
(%

)

ResNet-18
ResNet-34

18-layer

34-layer
18-layer

34-layer

Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to
their plain counterparts.

plain ResNet
18 layers 27.94 27.88
34 layers 28.54 25.03

Table 2. Top-1 error (%, 10-crop testing) on ImageNet validation.
Here the ResNets have no extra parameter compared to their plain
counterparts. Fig. 4 shows the training procedures.

34-layer plain net has higher training error throughout the
whole training procedure, even though the solution space
of the 18-layer plain network is a subspace of that of the
34-layer one.

We argue that this optimization difficulty is unlikely to
be caused by vanishing gradients. These plain networks are
trained with BN [16], which ensures forward propagated
signals to have non-zero variances. We also verify that the
backward propagated gradients exhibit healthy norms with
BN. So neither forward nor backward signals vanish. In
fact, the 34-layer plain net is still able to achieve compet-
itive accuracy (Table 3), suggesting that the solver works
to some extent. We conjecture that the deep plain nets may
have exponentially low convergence rates, which impact the

reducing of the training error3. The reason for such opti-
mization difficulties will be studied in the future.

Residual Networks. Next we evaluate 18-layer and 34-
layer residual nets (ResNets). The baseline architectures
are the same as the above plain nets, expect that a shortcut
connection is added to each pair of 3×3 filters as in Fig. 3
(right). In the first comparison (Table 2 and Fig. 4 right),
we use identity mapping for all shortcuts and zero-padding
for increasing dimensions (option A). So they have no extra
parameter compared to the plain counterparts.

We have three major observations from Table 2 and
Fig. 4. First, the situation is reversed with residual learn-
ing – the 34-layer ResNet is better than the 18-layer ResNet
(by 2.8%). More importantly, the 34-layer ResNet exhibits
considerably lower training error and is generalizable to the
validation data. This indicates that the degradation problem
is well addressed in this setting and we manage to obtain
accuracy gains from increased depth.

Second, compared to its plain counterpart, the 34-layer

3We have experimented with more training iterations (3×) and still ob-
served the degradation problem, suggesting that this problem cannot be
feasibly addressed by simply using more iterations.

5

(He et al., 2015)

François Fleuret EE-559 – Deep learning / 7.2. Networks for image classification 31 / 36

model top-1 err. top-5 err.

VGG-16 [41] 28.07 9.33
GoogLeNet [44] - 9.15
PReLU-net [13] 24.27 7.38

plain-34 28.54 10.02
ResNet-34 A 25.03 7.76
ResNet-34 B 24.52 7.46
ResNet-34 C 24.19 7.40
ResNet-50 22.85 6.71
ResNet-101 21.75 6.05
ResNet-152 21.43 5.71

Table 3. Error rates (%, 10-crop testing) on ImageNet validation.
VGG-16 is based on our test. ResNet-50/101/152 are of option B
that only uses projections for increasing dimensions.

method top-1 err. top-5 err.

VGG [41] (ILSVRC’14) - 8.43†

GoogLeNet [44] (ILSVRC’14) - 7.89
VGG [41] (v5) 24.4 7.1
PReLU-net [13] 21.59 5.71
BN-inception [16] 21.99 5.81
ResNet-34 B 21.84 5.71
ResNet-34 C 21.53 5.60
ResNet-50 20.74 5.25
ResNet-101 19.87 4.60
ResNet-152 19.38 4.49

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except † reported on the test set).

method top-5 err. (test)
VGG [41] (ILSVRC’14) 7.32
GoogLeNet [44] (ILSVRC’14) 6.66
VGG [41] (v5) 6.8
PReLU-net [13] 4.94
BN-inception [16] 4.82
ResNet (ILSVRC’15) 3.57

Table 5. Error rates (%) of ensembles. The top-5 error is on the
test set of ImageNet and reported by the test server.

ResNet reduces the top-1 error by 3.5% (Table 2), resulting
from the successfully reduced training error (Fig. 4 right vs.
left). This comparison verifies the effectiveness of residual
learning on extremely deep systems.

Last, we also note that the 18-layer plain/residual nets
are comparably accurate (Table 2), but the 18-layer ResNet
converges faster (Fig. 4 right vs. left). When the net is “not
overly deep” (18 layers here), the current SGD solver is still
able to find good solutions to the plain net. In this case, the
ResNet eases the optimization by providing faster conver-
gence at the early stage.

Identity vs. Projection Shortcuts. We have shown that

3x3, 64

1x1, 64

relu

1x1, 256

relu

relu

3x3, 64

3x3, 64

relu

relu

64-d 256-d

Figure 5. A deeper residual function F for ImageNet. Left: a
building block (on 56×56 feature maps) as in Fig. 3 for ResNet-
34. Right: a “bottleneck” building block for ResNet-50/101/152.

parameter-free, identity shortcuts help with training. Next
we investigate projection shortcuts (Eqn.(2)). In Table 3 we
compare three options: (A) zero-padding shortcuts are used
for increasing dimensions, and all shortcuts are parameter-
free (the same as Table 2 and Fig. 4 right); (B) projec-
tion shortcuts are used for increasing dimensions, and other
shortcuts are identity; and (C) all shortcuts are projections.

Table 3 shows that all three options are considerably bet-
ter than the plain counterpart. B is slightly better than A. We
argue that this is because the zero-padded dimensions in A
indeed have no residual learning. C is marginally better than
B, and we attribute this to the extra parameters introduced
by many (thirteen) projection shortcuts. But the small dif-
ferences among A/B/C indicate that projection shortcuts are
not essential for addressing the degradation problem. So we
do not use option C in the rest of this paper, to reduce mem-
ory/time complexity and model sizes. Identity shortcuts are
particularly important for not increasing the complexity of
the bottleneck architectures that are introduced below.

Deeper Bottleneck Architectures. Next we describe our
deeper nets for ImageNet. Because of concerns on the train-
ing time that we can afford, we modify the building block
as a bottleneck design4. For each residual function F , we
use a stack of 3 layers instead of 2 (Fig. 5). The three layers
are 1×1, 3×3, and 1×1 convolutions, where the 1×1 layers
are responsible for reducing and then increasing (restoring)
dimensions, leaving the 3×3 layer a bottleneck with smaller
input/output dimensions. Fig. 5 shows an example, where
both designs have similar time complexity.

The parameter-free identity shortcuts are particularly im-
portant for the bottleneck architectures. If the identity short-
cut in Fig. 5 (right) is replaced with projection, one can
show that the time complexity and model size are doubled,
as the shortcut is connected to the two high-dimensional
ends. So identity shortcuts lead to more efficient models
for the bottleneck designs.

50-layer ResNet: We replace each 2-layer block in the

4Deeper non-bottleneck ResNets (e.g., Fig. 5 left) also gain accuracy
from increased depth (as shown on CIFAR-10), but are not as economical
as the bottleneck ResNets. So the usage of bottleneck designs is mainly due
to practical considerations. We further note that the degradation problem
of plain nets is also witnessed for the bottleneck designs.

6

(He et al., 2015)

François Fleuret EE-559 – Deep learning / 7.2. Networks for image classification 32 / 36

This was extended to the ResNeXt architecture by Xie et al. (2016), with blocks
with similar number of parameters, but split into 32 “aggregated” pathways.

. . . +

Conv

1 × 1

256→ 4

BN ReLU

256

Conv

3 × 3

4→ 4

BN ReLU

Conv

1 × 1

4→ 256

BN

Conv

1 × 1

256→ 4

BN ReLU

Conv

3 × 3

4→ 4

BN ReLU

Conv

1 × 1

4→ 256

BN

ReLU . . .
256

. . .

When equalizing the number of parameters, this architecture performs better
than a standard resnet.

François Fleuret EE-559 – Deep learning / 7.2. Networks for image classification 33 / 36

Image classification, summary

François Fleuret EE-559 – Deep learning / 7.2. Networks for image classification 34 / 36

To summarize roughly the evolution of convnets for image classification:

• standard ones are extensions of LeNet5,

• everybody loves ReLU,

• state-of-the-art networks have 100s of channels and 10s of layers,

• they can (should?) be fully convolutional,

• pass-through connections allow deeper “residual” nets,

• bottleneck local structures reduce the number of parameters,

• aggregated pathways reduce the number of parameters.

François Fleuret EE-559 – Deep learning / 7.2. Networks for image classification 35 / 36

Image classification networks

LeNet5

(LeCun et al., 1989)LSTM

(Hochreiter and Schmidhuber, 1997)

Highway Net

(Srivastava et al., 2015)

No recurrence

Deep hierarchical CNN

(Ciresan et al., 2012)

Bigger + GPU

AlexNet

(Krizhevsky et al., 2012)

Bigger + ReLU

+ dropout

Overfeat

(Sermanet et al., 2013)

Fully

convolutional

VGG

(Simonyan and Zisserman, 2014)

Bigger +

small filters

Net in Net

(Lin et al., 2013)

MLPConv

GoogLeNet

(Szegedy et al., 2015)

Inception

modules

ResNet

(He et al., 2015)

No gating

BN-Inception

(Ioffe and Szegedy, 2015)

Batch

Normalization

Inception-ResNet

(Szegedy et al., 2016)

ResNeXt

(Xie et al., 2016)

DenseNet

(Huang et al., 2016)

Wide ResNet

(Zagoruyko and Komodakis, 2016)

Wider

Dense

pass-through
Aggregated

channels

François Fleuret EE-559 – Deep learning / 7.2. Networks for image classification 36 / 36

References

D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image
classification. CoRR, abs/1202.2745, 2012.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CoRR,
abs/1512.03385, 2015.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997.

G. Huang, Z. Liu, K. Weinberger, and L. van der Maaten. Densely connected convolutional
networks. CoRR, abs/1608.06993, 2016.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning
(ICML), 2015.

A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional
neural networks. In Neural Information Processing Systems (NIPS), 2012.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D.
Jackel. Backpropagation applied to handwritten zip code recognition. Neural
Computation, 1(4):541–551, 1989.

Y. leCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

M. Lin, Q. Chen, and S. Yan. Network in network. CoRR, abs/1312.4400, 2013.

P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat:
Integrated recognition, localization and detection using convolutional networks. CoRR,
abs/1312.6229, 2013.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014.

R. Srivastava, K. Greff, and J. Schmidhuber. Highway networks. CoRR, abs/1505.00387,
2015.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich. Going deeper with convolutions. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2015.

C. Szegedy, S. Ioffe, and V. Vanhoucke. Inception-v4, inception-resnet and the impact of
residual connections on learning. CoRR, abs/1602.07261, 2016.

S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated residual transformations for
deep neural networks. CoRR, abs/1611.05431.pdf, 2016.

S. Zagoruyko and N. Komodakis. Wide residual networks. CoRR, abs/1605.07146, 2016.

	Image classification, standard convnets
	Fully convolutional networks
	Image classification, network in network
	Image classification, residual networks
	Image classification, summary

