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The Long-Short Term Memory unit (LSTM) by Hochreiter and Schmidhuber
(1997), is a recurrent network with a gating of the form

ct = ct−1 + it � gt

where ct is a recurrent state, it is a gating function and gt is a full update. This
assures that the derivatives of the loss wrt ct does not vanish.
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It is noteworthy that this model implemented 20 years before the resnets of He
et al. (2015) uses the exact same strategy to deal with depth.

This original architecture was improved with a forget gate (Gers et al., 2000),
resulting in the standard LSTM in use.

In what follows we consider notation and variant from Jozefowicz et al. (2015).
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The recurrent state is composed of a “cell state” ct and an “output state” ht .
Gate ft modulates if the cell state should be forgotten, it if the new update
should be taken into account, and ot if the output state should be reset.

ft = sigm
(
W(x f)xt + W(h f)ht−1 + b(f)

)
(forget gate)

it = sigm
(
W(x i)xt + W(h i)ht−1 + b(i)

)
(input gate)

gt = tanh
(
W(x c)xt + W(h c)ht−1 + b(c)

)
(full cell state update)

ct = ft � ct−1 + it � gt (cell state)

ot = sigm
(
W(x o)xt + W(h o)ht−1 + b(o)

)
(output gate)

ht = ot � tanh(ct) (output state)

As pointed out by Gers et al. (2000), the forget bias b(f) should be initialized
with large values so that initially ft ' 1 and the gating has no effect.

This model was extended by Gers et al. (2003) with “peephole connections”
that allow gates to depend on ct−1.
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B Prediction is done from the ht state, hence called the output state.
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Several such “cells” can be combined to create a multi-layer LSTM.

Two layer LSTM
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PyTorch’s torch.nn.LSTM implements this model.

Its processes several sequences, and returns two tensors, with D the number of
layers and T the sequence length:

• the outputs for all the layers at the last time step: h1
T and hDT , and

• the outputs of the last layer at each time step: hD1 , . . . , h
D
T .

The initial recurrent states h1
0, . . . , h

D
0 and c1

0 , . . . , c
D
0 can also be specified.
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PyTorch’s RNNs can process batches of sequences of same length, that can be
encoded in a regular tensor, or batches of sequences of various lengths using the
type nn.utils.rnn.PackedSequence.

Such an object can be created with nn.utils.rnn.pack_padded_sequence:

>>> from torch.nn.utils.rnn import pack_padded_sequence
>>> pack_padded_sequence(torch.tensor([[[ 1. ], [ 2. ]],
... [[ 3. ], [ 4. ]],
... [[ 5. ], [ 0. ]]]),
... [3, 2])
PackedSequence(data=tensor([[ 1.],

[ 2.],
[ 3.],
[ 4.],
[ 5.]]), batch_sizes=tensor([ 2, 2, 1]))

B The sequences must be sorted by decreasing lengths.

nn.utils.rnn.pad_packed_sequence converts back to a padded tensor.
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class LSTMNet(nn.Module):
def __init__(self, dim_input, dim_recurrent, num_layers, dim_output):

super(LSTMNet, self).__init__()
self.lstm = nn.LSTM(input_size = dim_input,

hidden_size = dim_recurrent,
num_layers = num_layers)

self.fc_o2y = nn.Linear(dim_recurrent, dim_output)

def forward(self, input):
# Makes this a batch of size 1
input = input.unsqueeze(1)
# Get the activations of all layers at the last time step
output, _ = self.lstm(input)
# Drop the batch index
output = output.squeeze(1)
output = output[output.size(0) - 1:output.size(0)]
return self.fc_o2y(F.relu(output))
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The LSTM were simplified into the Gated Recurrent Unit (GRU) by Cho et al.
(2014), with a gating for the recurrent state, and a reset gate.

rt = sigm
(
W(x r)xt + W(h r)ht−1 + b(r)

)
(reset gate)

zt = sigm
(
W(x z)xt + W(h z)ht−1 + b(z)

)
(forget gate)

h̄t = tanh
(
W(x h)xt + W(h h)(rt � ht−1) + b(h)

)
(full update)

ht = zt � ht−1 + (1− zt)� h̄t (hidden update)

François Fleuret EE-559 – Deep learning / 11.2. LSTM and GRU 10 / 15

class GRUNet(nn.Module):
def __init__(self, dim_input, dim_recurrent, num_layers, dim_output):

super(GRUNet, self).__init__()
self.gru = nn.GRU(input_size = dim_input,

hidden_size = dim_recurrent,
num_layers = num_layers)

self.fc_y = nn.Linear(dim_recurrent, dim_output)

def forward(self, input):
# Make this a batch of size 1
input = input.unsqueeze(1)
# Get the activations of all layers at the last time step
_, output = self.gru(input)
# Drop the batch index
output = output.squeeze(1)
output = output.narrow[output.size(0) - 1:output.size(0)]
return self.fc_y(F.relu(output))
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The specific form of these units prevent the gradient from vanishing, but it may
still be excessively large on certain mini-batch.

The standard strategy to solve this issue is gradient norm clipping (Pascanu
et al., 2013), which consists of re-scaling the [norm of the] gradient to a fixed
threshold δ when if it was above:

∇̃f =
∇f
‖∇f ‖

min (‖∇f ‖, δ) .
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The function torch.nn.utils.clip_grad_norm applies this operation to the
gradient of a model, as defined by an iterator through its parameters:

>>> x = torch.empty(10)
>>> x.grad = x.new(x.size()).normal_()
>>> y = torch.empty(5)
>>> y.grad = y.new(y.size()).normal_()
>>> torch.cat((x.grad, y.grad)).norm()
tensor(4.0303)
>>> torch.nn.utils.clip_grad_norm_((x, y), 5.0)
tensor(4.0303)
>>> torch.cat((x.grad, y.grad)).norm()
tensor(4.0303)
>>> torch.nn.utils.clip_grad_norm_((x, y), 1.25)
tensor(4.0303)
>>> torch.cat((x.grad, y.grad)).norm()
tensor(1.2500)
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Jozefowicz et al. (2015) conducted an extensive exploration of different
recurrent architectures through meta-optimization, and even though some units
simpler than LSTM or GRU perform well, they wrote:

“We have evaluated a variety of recurrent neural network architectures in
order to find an architecture that reliably out-performs the LSTM. Though
there were architectures that outperformed the LSTM on some problems,
we were unable to find an architecture that consistently beat the LSTM and
the GRU in all experimental conditions.”

(Jozefowicz et al., 2015)
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