Deep learning

8.4. Networks for semantic segmentation

François Fleuret
https://fleuret.org/dlc/
The historical approach to image segmentation was to define a measure of similarity between pixels, and to cluster groups of similar pixels.
The historical approach to image segmentation was to define a measure of similarity between pixels, and to cluster groups of similar pixels. Such approaches account poorly for semantic content.
The historical approach to image segmentation was to define a measure of similarity between pixels, and to cluster groups of similar pixels. Such approaches account poorly for semantic content.

The deep-learning approach re-casts semantic segmentation as pixel classification, and re-uses networks trained for image classification by making them fully convolutional.
Shelhamer et al. (2016) proposed the FCN ("Fully Convolutional Network") that uses a pre-trained classification network (e.g. VGG 16 layers).

The fully connected layers are converted to 1×1 convolutional filters, and the final one retrained for 21 output channels (VOC 20 classes + “background”).
Shelhamer et al. (2016) proposed the FCN (“Fully Convolutional Network”) that uses a pre-trained classification network (e.g. VGG 16 layers).

The fully connected layers are converted to 1×1 convolutional filters, and the final one retrained for 21 output channels (VOC 20 classes + “background”).

Since VGG16 has 5 max-pooling with 2×2 kernels, with proper padding, the output is $1/2^5 = 1/32$ the size of the input.

This map is then up-scaled with a transposed convolution layer with kernel 64×64 and stride 32×32 to get a final map of same size as the input image.
Shelhamer et al. (2016) proposed the FCN (“Fully Convolutional Network”) that uses a pre-trained classification network (e.g. VGG 16 layers).

The fully connected layers are converted to 1×1 convolutional filters, and the final one retrained for 21 output channels (VOC 20 classes + “background”).

Since VGG16 has 5 max-pooling with 2×2 kernels, with proper padding, the output is $1/2^5 = 1/32$ the size of the input.

This map is then up-scaled with a transposed convolution layer with kernel 64×64 and stride 32×32 to get a final map of same size as the input image.

Training is achieved with full images and pixel-wise cross-entropy, starting with a pre-trained VGG16. All layers are fine-tuned, although fixing the up-scaling transposed convolution to bilinear does as well.
VGG without its last layer

- $2 \times \text{conv/relu} + \text{maxpool}$
 - $\frac{1}{2}, 64d$
- $2 \times \text{conv/relu} + \text{maxpool}$
 - $\frac{1}{4}, 128d$
- $3 \times \text{conv/relu} + \text{maxpool}$
 - $\frac{1}{8}, 256d$
- $3 \times \text{conv/relu} + \text{maxpool}$
 - $\frac{1}{16}, 512d$
- $3 \times \text{conv/relu} + \text{maxpool}$
 - $\frac{1}{32}, 512d$
- $2 \times \text{fc-conv/relu}$
 - $\frac{1}{32}, 4096d$
2 × conv/relu + maxpool

2 × conv/relu + maxpool

3 × conv/relu + maxpool

3 × conv/relu + maxpool

3 × conv/relu + maxpool

2 × fc-conv/relu

fc-conv

deconv × 32

3d

1/2, 64d

1/4, 128d

1/8, 256d

1/16, 512d

1/32, 512d

1/32, 4096d

1/32, 21d

21d
Although the FCN achieved almost state-of-the-art results when published, its main weakness is the coarseness of the signal from which the final output is produced (1/32 of the original resolution).

Shelhamer et al. proposed an additional element, that consists of using the same prediction/up-scaling from intermediate layers of the VGG network.
Left column is the best network from Shelhamer et al. (2016).
Results with a network trained from mask only (Shelhamer et al., 2016).
The most sophisticated object detection methods achieve **instance segmentation** and estimate a segmentation mask per detected object.

Mask R-CNN (He et al., 2017) adds a branch to the Faster R-CNN model to estimate a mask for each detected region of interest.

![Figure 1. The Mask R-CNN framework for instance segmentation.](image)

(He et al., 2017)
Figure 5. More results of **Mask R-CNN** on COCO test images, using ResNet-101-FPN and running at 5 fps, with 35.7 mask AP (Table 1).

(He et al., 2017)
It is noteworthy that for detection and semantic segmentation, there is an heavy re-use of large networks trained for classification.

The models themselves, as much as the source code of the algorithm that produced them, or the training data, are generic and re-usable assets.
The end
References
