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The historical approach to image segmentation was to define a measure of
similarity between pixels, and to cluster groups of similar pixels.
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The historical approach to image segmentation was to define a measure of
similarity between pixels, and to cluster groups of similar pixels. Such
approaches account poorly for semantic content.

The deep-learning approach re-casts semantic segmentation as pixel
classification, and re-uses networks trained for image classification by making
them fully convolutional.
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Shelhamer et al. (2016) proposed the FCN (“Fully Convolutional Network’)
that uses a pre-trained classification network (e.g. VGG 16 layers).

The fully connected layers are converted to 1 X 1 convolutional filters, and the
final one retrained for 21 output channels (VOC 20 classes + “background”).
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The fully connected layers are converted to 1 X 1 convolutional filters, and the
final one retrained for 21 output channels (VOC 20 classes + “background”).

Since VGG16 has 5 max-pooling with 2 x 2 kernels, with proper padding, the
output is 1/2% = 1/32 the size of the input.

This map is then up-scaled with a transposed convolution layer with kernel
64 x 64 and stride 32 x 32 to get a final map of same size as the input image.
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Shelhamer et al. (2016) proposed the FCN (“Fully Convolutional Network’)
that uses a pre-trained classification network (e.g. VGG 16 layers).

The fully connected layers are converted to 1 X 1 convolutional filters, and the
final one retrained for 21 output channels (VOC 20 classes + “background”).

Since VGG16 has 5 max-pooling with 2 x 2 kernels, with proper padding, the
output is 1/2% = 1/32 the size of the input.

This map is then up-scaled with a transposed convolution layer with kernel

64 x 64 and stride 32 x 32 to get a final map of same size as the input image.

Training is achieved with full images and pixel-wise cross-entropy, starting with
a pre-trained VGG16. All layers are fine-tuned, although fixing the up-scaling
transposed convolution to bilinear does as well.
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Although the FCN achieved almost state-of-the-art results when published, its
main weakness is the coarseness of the signal from which the final output is
produced (1/32 of the original resolution).

Shelhamer et al. proposed an additional element, that consists of using the
same prediction/up-scaling from intermediate layers of the VGG network.
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SDS [14] Ground Truth Image

Left column is the best network from Shelhamer et al. (2016).
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Ground Truth Output

Results with a network trained from mask only (Shelhamer et al., 2016).
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The most sophisticated object detection methods achieve instance
segmentation and estimate a segmentation mask per detected object.

Mask R-CNN (He et al., 2017) adds a branch to the Faster R-CNN model to
estimate a mask for each detected region of interest.

Figure 1. The Mask R-CNN framework for instance segmentation.

(He et al., 2017)

Francois Fleuret Deep learning / 8.4. Networks for semantic segmentation 8 /10



Figure 5. More results of Mask R-CNN on COCO test images, using ResNet-101-FPN and running at 5 fps, with 35.7 mask AP (Table 1).

(He et al., 2017)
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It is noteworthy that for detection and semantic segmentation, there is an heavy
re-use of large networks trained for classification.

The models themselves, as much as the source code of the algorithm that
produced them, or the training data, are generic and re-usable assets.
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The end
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