Deep learning

8.4. Networks for semantic segmentation

François Fleuret

https://fleuret.org/dlc/
The historical approach to image segmentation was to define a measure of similarity between pixels, and to cluster groups of similar pixels.
The historical approach to image segmentation was to define a measure of similarity between pixels, and to cluster groups of similar pixels. Such approaches account poorly for semantic content.
The historical approach to image segmentation was to define a measure of similarity between pixels, and to cluster groups of similar pixels. Such approaches account poorly for semantic content.

The deep-learning approach re-casts semantic segmentation as pixel classification, and re-uses networks trained for image classification by making them fully convolutional.
Shelhamer et al. (2016) proposed the FCN ("Fully Convolutional Network") that uses a pre-trained classification network (e.g. VGG 16 layers).

The fully connected layers are converted to 1×1 convolutional filters, and the final one retrained for 21 output channels (VOC 20 classes + "background").
Shelhamer et al. (2016) proposed the FCN (“Fully Convolutional Network”) that uses a pre-trained classification network (e.g. VGG 16 layers).

The fully connected layers are converted to 1×1 convolutional filters, and the final one retrained for 21 output channels (VOC 20 classes + “background”).

Since VGG16 has 5 max-pooling with 2×2 kernels, with proper padding, the output is $1/2^5 = 1/32$ the size of the input.

This map is then up-scaled with a transposed convolution layer with kernel 64×64 and stride 32×32 to get a final map of same size as the input image.
Shelhamer et al. (2016) proposed the FCN (“Fully Convolutional Network”) that uses a pre-trained classification network (e.g. VGG 16 layers).

The fully connected layers are converted to \(1 \times 1\) convolutional filters, and the final one retrained for 21 output channels (VOC 20 classes + “background”).

Since VGG16 has 5 max-pooling with \(2 \times 2\) kernels, with proper padding, the output is \(1/2^5 = 1/32\) the size of the input.

This map is then up-scaled with a transposed convolution layer with kernel \(64 \times 64\) and stride \(32 \times 32\) to get a final map of same size as the input image.

Training is achieved with full images and pixel-wise cross-entropy, starting with a pre-trained VGG16. All layers are fine-tuned, although fixing the up-scaling transposed convolution to bilinear does as well.
VGG without its last layer

2 × conv/relu + maxpool

$2 \times \frac{1}{2}, 64d$

$2 \times \frac{1}{4}, 128d$

$3 \times \frac{1}{8}, 256d$

$3 \times \frac{1}{16}, 512d$

$3 \times \frac{1}{32}, 512d$

$2 \times \frac{1}{32}, 4096d$
Although the FCN achieved almost state-of-the-art results when published, its main weakness is the coarseness of the signal from which the final output is produced ($1/32$ of the original resolution).

Shelhamer et al. proposed an additional element, that consists of using the same prediction/up-scaling from intermediate layers of the VGG network.
2 × conv/relu + maxpool

3 × conv/relu + maxpool

3 × conv/relu + maxpool

2 × fc-conv/relu

fc-conv

21d

1/8, 21d

1/16, 21d

1/32, 21d

1/64, 21d

1/128, 21d

1/256, 21d

1/512, 21d

1/1024, 21d

3d
Left column is the best network from Shelhamer et al. (2016).
Results with a network trained from mask only (Shelhamer et al., 2016).
The most sophisticated object detection methods achieve **instance segmentation** and estimate a segmentation mask per detected object.

Mask R-CNN (He et al., 2017) adds a branch to the Faster R-CNN model to estimate a mask for each detected region of interest.

![Diagram of Mask R-CNN](image)

Figure 1. The **Mask R-CNN** framework for instance segmentation.

(He et al., 2017)
Figure 5. More results of **Mask R-CNN** on COCO test images, using ResNet-101-FPN and running at 5 fps, with 35.7 mask AP (Table 1).

(He et al., 2017)
It is noteworthy that for detection and semantic segmentation, there is a heavy re-use of large networks trained for classification.

The models themselves, as much as the source code of the algorithm that produced them, or the training data, are generic and re-usable assets.
The end
References
