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The simplest strategy for object detection is to classify local regions, at multiple
scales and locations.

. . .

Parsing at fixed scale Final list of detections

This “sliding window” approach evaluates a classifier multiple times, and its
computational cost increases with the prediction accuracy.
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This was mitigated in overfeat (Sermanet et al., 2013) by adding a regression
part to predict the object’s bounding box.
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In the single-object case, the convolutional layers are frozen, and the
localization layers are trained with a L2 loss.

Figure 7:Examples of bounding boxes produced by the regression network , before being com-
bined into final predictions. The examples shown here are at asingle scale. Predictions may be
more optimal at other scales depending on the objects. Here,most of the bounding boxes which are
initially organized as a grid, converge to a single locationand scale. This indicates that the network
is very confident in the location of the object, as opposed to being spread out randomly. The top left
image shows that it can also correctly identify multiple location if several objects are present. The
various aspect ratios of the predicted bounding boxes showsthat the network is able to cope with
various object poses.

We fix the feature extraction layers (1-5) from the classification network and train the regression
network using anℓ2 loss between the predicted and true bounding box for each example. The final
regressor layer is class-specific, having 1000 different versions, one for each class. We train this
network using the same set of scales as described in Section 3. We compare the prediction of the
regressor net at each spatial location with the ground-truth bounding box, shifted into the frame of
reference of the regressor’s translation offset within theconvolution (see Fig. 8). However, we do
not train the regressor on bounding boxes with less than 50% overlap with the input field of view:
since the object is mostly outside of these locations, it will be better handled by regression windows
that do contain the object.

Training the regressors in a multi-scale manner is important for the across-scale prediction combi-
nation. Training on a single scale will perform well on that scale and still perform reasonably on
other scales. However training multi-scale will make predictions match correctly across scales and
exponentially increase the confidence of the merged predictions. In turn, this allows us to perform
well with a few scales only, rather than many scales as is typically the case in detection. The typical
ratio from one scale to another in pedestrian detection [25]is about 1.05 to 1.1, here however we use
a large ratio of approximately 1.4 (this number differs for each scale since dimensions are adjusted
to fit exactly the stride of our network) which allows us to runour system faster.

4.3 Combining Predictions

We combine the individual predictions (see Fig. 7) via a greedy merge strategy applied to the regres-
sor bounding boxes, using the following algorithm.

(a) Assign toCs the set of classes in the topk for each scales ∈ 1 . . . 6, found by taking the
maximum detection class outputs across spatial locations for that scale.

(b) Assign toBs the set of bounding boxes predicted by the regressor networkfor each class inCs,
across all spatial locations at scales.

10

(Sermanet et al., 2013)

Combining the multiple boxes is done with an ad hoc greedy algorithm.
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This architecture can be applied directly to detection by adding a class
“Background” to the object classes.

Negative samples are taken in each scene either at random or by selecting the
ones with the worst miss-classification.

Surprisingly, using class-specific localization layers did not provide better results
than having a single one shared across classes (Sermanet et al., 2013).
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Other approaches evolved from AlexNet, relying on region proposals:

• Generate thousands of proposal bounding boxes with a non-CNN
“objectness” approach such as Selective search (Uijlings et al., 2013),

• feed to an AlexNet-like network sub-images cropped and warped from the
input image (“R-CNN”, Girshick et al., 2013), or from the convolutional
feature maps to share computation (“Fast R-CNN”, Girshick, 2015).

These methods suffer from the cost of the region proposal computation, which
is non-convolutional and not implementable on GPU.

They were improved by Ren et al. (2015) in “Faster R-CNN” by replacing the
region proposal algorithm with a convolutional processing similar to Overfeat.
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The most famous algorithm from this lineage is “You Only Look Once” (YOLO,
Redmon et al. 2015).

It comes back to a classical architecture with a series of convolutional layers
followed by a few fully connected layers. It is sometime described as “one shot”
since a single information pathway suffices.

YOLO’s network is not a pre-existing one. It uses leaky ReLU, and its
convolutional layers make use of the 1× 1 bottleneck filters (Lin et al., 2013) to
control the memory footprint and computational cost.
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making predictions. Unlike sliding window and region
proposal-based techniques, YOLO sees the entire image
during training and test time so it implicitly encodes contex-
tual information about classes as well as their appearance.
Fast R-CNN, a top detection method [14], mistakes back-
ground patches in an image for objects because it can’t see
the larger context. YOLO makes less than half the number
of background errors compared to Fast R-CNN.

Third, YOLO learns generalizable representations of ob-
jects. When trained on natural images and tested on art-
work, YOLO outperforms top detection methods like DPM
and R-CNN by a wide margin. Since YOLO is highly gen-
eralizable it is less likely to break down when applied to
new domains or unexpected inputs.

YOLO still lags behind state-of-the-art detection systems
in accuracy. While it can quickly identify objects in im-
ages it struggles to precisely localize some objects, espe-
cially small ones. We examine these tradeoffs further in our
experiments.

All of our training and testing code is open source. A
variety of pretrained models are also available to download.

2. Unified Detection

We unify the separate components of object detection
into a single neural network. Our network uses features
from the entire image to predict each bounding box. It also
predicts all bounding boxes across all classes for an im-
age simultaneously. This means our network reasons glob-
ally about the full image and all the objects in the image.
The YOLO design enables end-to-end training and real-
time speeds while maintaining high average precision.

Our system divides the input image into an S × S grid.
If the center of an object falls into a grid cell, that grid cell
is responsible for detecting that object.

Each grid cell predictsB bounding boxes and confidence
scores for those boxes. These confidence scores reflect how
confident the model is that the box contains an object and
also how accurate it thinks the box is that it predicts. For-
mally we define confidence as Pr(Object) ∗ IOUtruth

pred . If no
object exists in that cell, the confidence scores should be
zero. Otherwise we want the confidence score to equal the
intersection over union (IOU) between the predicted box
and the ground truth.

Each bounding box consists of 5 predictions: x, y, w, h,
and confidence. The (x, y) coordinates represent the center
of the box relative to the bounds of the grid cell. The width
and height are predicted relative to the whole image. Finally
the confidence prediction represents the IOU between the
predicted box and any ground truth box.

Each grid cell also predicts C conditional class proba-
bilities, Pr(Classi|Object). These probabilities are condi-
tioned on the grid cell containing an object. We only predict

one set of class probabilities per grid cell, regardless of the
number of boxes B.

At test time we multiply the conditional class probabili-
ties and the individual box confidence predictions,

Pr(Classi|Object) ∗ Pr(Object) ∗ IOUtruth
pred = Pr(Classi) ∗ IOUtruth

pred (1)

which gives us class-specific confidence scores for each
box. These scores encode both the probability of that class
appearing in the box and how well the predicted box fits the
object.

S × S grid on input

Bounding boxes + confidence

Class probability map

Final detections

Figure 2: The Model. Our system models detection as a regres-
sion problem. It divides the image into an S×S grid and for each
grid cell predicts B bounding boxes, confidence for those boxes,
and C class probabilities. These predictions are encoded as an
S × S × (B ∗ 5 + C) tensor.

For evaluating YOLO on PASCAL VOC, we use S = 7,
B = 2. PASCAL VOC has 20 labelled classes so C = 20.
Our final prediction is a 7× 7× 30 tensor.

2.1. Network Design

We implement this model as a convolutional neural net-
work and evaluate it on the PASCAL VOC detection dataset
[9]. The initial convolutional layers of the network extract
features from the image while the fully connected layers
predict the output probabilities and coordinates.

Our network architecture is inspired by the GoogLeNet
model for image classification [34]. Our network has 24
convolutional layers followed by 2 fully connected layers.
Instead of the inception modules used by GoogLeNet, we
simply use 1× 1 reduction layers followed by 3× 3 convo-
lutional layers, similar to Lin et al [22]. The full network is
shown in Figure 3.

We also train a fast version of YOLO designed to push
the boundaries of fast object detection. Fast YOLO uses a
neural network with fewer convolutional layers (9 instead
of 24) and fewer filters in those layers. Other than the size
of the network, all training and testing parameters are the
same between YOLO and Fast YOLO.

(Redmon et al., 2015)
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The output corresponds to splitting the image into a regular S × S grid, with
S = 7

, and for each cell, to predict a 30d vector:

• B = 2 bounding boxes coordinates and confidence,

• C = 20 class probabilities, corresponding to the classes of Pascal VOC.
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Figure 3: The Architecture. Our detection network has 24 convolutional layers followed by 2 fully connected layers. Alternating 1× 1
convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification
task at half the resolution (224× 224 input image) and then double the resolution for detection.

The final output of our network is the 7× 7× 30 tensor
of predictions.

2.2. Training

We pretrain our convolutional layers on the ImageNet
1000-class competition dataset [30]. For pretraining we use
the first 20 convolutional layers from Figure 3 followed by a
average-pooling layer and a fully connected layer. We train
this network for approximately a week and achieve a single
crop top-5 accuracy of 88% on the ImageNet 2012 valida-
tion set, comparable to the GoogLeNet models in Caffe’s
Model Zoo [24]. We use the Darknet framework for all
training and inference [26].

We then convert the model to perform detection. Ren et
al. show that adding both convolutional and connected lay-
ers to pretrained networks can improve performance [29].
Following their example, we add four convolutional lay-
ers and two fully connected layers with randomly initialized
weights. Detection often requires fine-grained visual infor-
mation so we increase the input resolution of the network
from 224× 224 to 448× 448.

Our final layer predicts both class probabilities and
bounding box coordinates. We normalize the bounding box
width and height by the image width and height so that they
fall between 0 and 1. We parametrize the bounding box x
and y coordinates to be offsets of a particular grid cell loca-
tion so they are also bounded between 0 and 1.

We use a linear activation function for the final layer and
all other layers use the following leaky rectified linear acti-
vation:

φ(x) =

{
x, if x > 0

0.1x, otherwise
(2)

We optimize for sum-squared error in the output of our

model. We use sum-squared error because it is easy to op-
timize, however it does not perfectly align with our goal of
maximizing average precision. It weights localization er-
ror equally with classification error which may not be ideal.
Also, in every image many grid cells do not contain any
object. This pushes the “confidence” scores of those cells
towards zero, often overpowering the gradient from cells
that do contain objects. This can lead to model instability,
causing training to diverge early on.

To remedy this, we increase the loss from bounding box
coordinate predictions and decrease the loss from confi-
dence predictions for boxes that don’t contain objects. We
use two parameters, λcoord and λnoobj to accomplish this. We
set λcoord = 5 and λnoobj = .5.

Sum-squared error also equally weights errors in large
boxes and small boxes. Our error metric should reflect that
small deviations in large boxes matter less than in small
boxes. To partially address this we predict the square root
of the bounding box width and height instead of the width
and height directly.

YOLO predicts multiple bounding boxes per grid cell.
At training time we only want one bounding box predictor
to be responsible for each object. We assign one predictor
to be “responsible” for predicting an object based on which
prediction has the highest current IOU with the ground
truth. This leads to specialization between the bounding box
predictors. Each predictor gets better at predicting certain
sizes, aspect ratios, or classes of object, improving overall
recall.

During training we optimize the following, multi-part

(Redmon et al., 2015)

x̂i,1 ŷi,1 ŵi,1 ĥi,1 ĉi,1 . . . x̂i,B ŷi,B ŵi,B ĥi,B ĉi,B p̂i,1 . . . p̂i,C

5B values C values
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of predictions.

2.2. Training

We pretrain our convolutional layers on the ImageNet
1000-class competition dataset [30]. For pretraining we use
the first 20 convolutional layers from Figure 3 followed by a
average-pooling layer and a fully connected layer. We train
this network for approximately a week and achieve a single
crop top-5 accuracy of 88% on the ImageNet 2012 valida-
tion set, comparable to the GoogLeNet models in Caffe’s
Model Zoo [24]. We use the Darknet framework for all
training and inference [26].

We then convert the model to perform detection. Ren et
al. show that adding both convolutional and connected lay-
ers to pretrained networks can improve performance [29].
Following their example, we add four convolutional lay-
ers and two fully connected layers with randomly initialized
weights. Detection often requires fine-grained visual infor-
mation so we increase the input resolution of the network
from 224× 224 to 448× 448.

Our final layer predicts both class probabilities and
bounding box coordinates. We normalize the bounding box
width and height by the image width and height so that they
fall between 0 and 1. We parametrize the bounding box x
and y coordinates to be offsets of a particular grid cell loca-
tion so they are also bounded between 0 and 1.

We use a linear activation function for the final layer and
all other layers use the following leaky rectified linear acti-
vation:

φ(x) =

{
x, if x > 0

0.1x, otherwise
(2)

We optimize for sum-squared error in the output of our

model. We use sum-squared error because it is easy to op-
timize, however it does not perfectly align with our goal of
maximizing average precision. It weights localization er-
ror equally with classification error which may not be ideal.
Also, in every image many grid cells do not contain any
object. This pushes the “confidence” scores of those cells
towards zero, often overpowering the gradient from cells
that do contain objects. This can lead to model instability,
causing training to diverge early on.

To remedy this, we increase the loss from bounding box
coordinate predictions and decrease the loss from confi-
dence predictions for boxes that don’t contain objects. We
use two parameters, λcoord and λnoobj to accomplish this. We
set λcoord = 5 and λnoobj = .5.

Sum-squared error also equally weights errors in large
boxes and small boxes. Our error metric should reflect that
small deviations in large boxes matter less than in small
boxes. To partially address this we predict the square root
of the bounding box width and height instead of the width
and height directly.

YOLO predicts multiple bounding boxes per grid cell.
At training time we only want one bounding box predictor
to be responsible for each object. We assign one predictor
to be “responsible” for predicting an object based on which
prediction has the highest current IOU with the ground
truth. This leads to specialization between the bounding box
predictors. Each predictor gets better at predicting certain
sizes, aspect ratios, or classes of object, improving overall
recall.

During training we optimize the following, multi-part

(Redmon et al., 2015)

x̂i,1 ŷi,1 ŵi,1 ĥi,1 ĉi,1 . . . x̂i,B ŷi,B ŵi,B ĥi,B ĉi,B p̂i,1 . . . p̂i,C

5B values C values
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So the network predicts class scores and bounding-box regressions, and
although the output comes from fully connected layers, it has a 2D structure.

It allows in particular YOLO to leverage the absolute location in the image to
improve performance (e.g. vehicles tend to be at the bottom, umbrella at the
top), which may or may not be desirable.
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During training, YOLO makes the assumption that any of the S2 cells contains
at most [the center of] a single object. We define for every image, cell index
i = 1, . . . , S2, predicted box index j = 1, . . . ,B and class index c = 1, . . . ,C

• 1obji is 1 if there is an object in cell i and 0 otherwise,

• 1obji,j is 1 if there is an object in cell i and predicted box j is the most fitting

one, 0 otherwise.

• pi,c is 1 if there is an object of class c in cell i , and 0 otherwise,

• xi , yi ,wi , hi the annotated object bounding box (defined only if 1obji = 1,
and relative in location and scale to the cell),

• ci,j IOU between the predicted box and the ground truth target.
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The training procedure first computes on each image the value of the 1obji,j s and

ci,j , and then does one step to minimize

λcoord

S2∑
i=1

B∑
j=1

1obji,j

(
(xi−x̂i,j )

2 + (yi−ŷi,j )
2 +

(√
wi−

√
ŵi,j

)2
+

(√
hi−

√
ĥi,j

)2
)

+ λobj

S2∑
i=1

B∑
j=1

1obji,j (ci,j−ĉi,j )
2 + λnoobj

S2∑
i=1

B∑
j=1

(
1−1obji,j

)
ĉ2i,j

+ λclasses

S2∑
i=1

1obji

C∑
c=1

(
pi,c−p̂i,c

)2
.

where p̂i,c , x̂i,j , ŷi,j , ŵi,j , ĥi,j , ĉi,j are the network’s outputs.

(slightly re-written from Redmon et al. 2015)
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Training YOLO relies on many engineering choices that illustrate well how
involved is deep-learning “in practice”:

• Pre-train the 20 first convolutional layers on ImageNet classification,

• use 448× 448 input for detection, instead of 224× 224,

• use Leaky ReLU for all layers,

• dropout after the first fully connected layer,

• normalize bounding boxes parameters in [0, 1],

• use a quadratic loss not only for the bounding box coordinates, but also for
the confidence and the class scores,

• reduce the weight of large bounding boxes by using the square roots of the
size in the loss,

• reduce the importance of empty cells by weighting less the
confidence-related loss on them,

• use momentum 0.9, decay 5e − 4,

• data augmentation with scaling, translation, and HSV transformation.

A critical technical point is the design of the loss function that articulates both
a classification and a regression objectives.
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The Single Shot Multi-box Detector (SSD, Liu et al., 2015) improves upon
YOLO with a fully-convolutional architectures and multi-scale maps.4 Liu et al.
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Fig. 2: A comparison between two single shot detection models: SSD and YOLO [5].
Our SSD model adds several feature layers to the end of a base network, which predict
the offsets to default boxes of different scales and aspect ratios and their associated
confidences. SSD with a 300 × 300 input size significantly outperforms its 448 × 448
YOLO counterpart in accuracy on VOC2007 test while also improving the speed.

box position relative to each feature map location (cf the architecture of YOLO[5] that
uses an intermediate fully connected layer instead of a convolutional filter for this step).
Default boxes and aspect ratios We associate a set of default bounding boxes with
each feature map cell, for multiple feature maps at the top of the network. The default
boxes tile the feature map in a convolutional manner, so that the position of each box
relative to its corresponding cell is fixed. At each feature map cell, we predict the offsets
relative to the default box shapes in the cell, as well as the per-class scores that indicate
the presence of a class instance in each of those boxes. Specifically, for each box out of
k at a given location, we compute c class scores and the 4 offsets relative to the original
default box shape. This results in a total of (c+ 4)k filters that are applied around each
location in the feature map, yielding (c+ 4)kmn outputs for a m× n feature map. For
an illustration of default boxes, please refer to Fig. 1. Our default boxes are similar to
the anchor boxes used in Faster R-CNN [2], however we apply them to several feature
maps of different resolutions. Allowing different default box shapes in several feature
maps let us efficiently discretize the space of possible output box shapes.

2.2 Training

The key difference between training SSD and training a typical detector that uses region
proposals, is that ground truth information needs to be assigned to specific outputs in
the fixed set of detector outputs. Some version of this is also required for training in
YOLO[5] and for the region proposal stage of Faster R-CNN[2] and MultiBox[7]. Once
this assignment is determined, the loss function and back propagation are applied end-
to-end. Training also involves choosing the set of default boxes and scales for detection
as well as the hard negative mining and data augmentation strategies.

(Liu et al., 2015)
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To summarize roughly how “one shot” deep detection can be achieved:

• networks trained on image classification capture localization information,

• regression layers can be attached to classification-trained networks,

• object localization does not have to be class-specific,

• multiple detection are estimated at each location to account for different
aspect ratios and scales.
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Object detection networks

AlexNet

(Krizhevsky et al., 2012)

Overfeat

(Sermanet et al., 2013)

Box

regression

R-CNN

(Girshick et al., 2013)

Region proposal

+ crop in image

Fast R-CNN

(Girshick, 2015)

Crop in

feature maps

Faster R-CNN

(Ren et al., 2015)

Convolutional

region proposal

YOLO

(Redmon et al., 2015)

No crop

SSD

(Liu et al., 2015)

Fully convolutional

+ multi-scale maps

Multi-scale

convolutions

+ multi boxes
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The end
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