Deep learning

7.2. Autoencoders

François Fleuret

https://fleuret.org/dlc/
Many applications such as image synthesis, denoising, super-resolution, speech synthesis, compression, etc. require to go beyond classification and regression, and model explicitly a high dimension signal.
Many applications such as image synthesis, denoising, super-resolution, speech synthesis, compression, etc. require to go beyond classification and regression, and model explicitly a high dimension signal.

This modeling consists of finding “meaningful degrees of freedom” that describe the signal, and are of lesser dimension.
Original space \mathcal{X}
Original space \mathcal{X}
Original space \mathcal{X}

Latent space \mathcal{F}
Latent space \mathcal{F}

Original space \mathcal{X}

g
When dealing with real-world signals, this objective involves the same theoretical and practical issues as for classification or regression: defining the right class of high-dimension models, and optimizing them.

Regarding synthesis, we saw that deep feed-forward architectures exhibit good generative properties, which motivates their use explicitly for that purpose.
Autoencoders
An autoencoder maps a space to itself and is [close to] the identity on the data.

Dimension reduction can be achieved with an autoencoder composed of an **encoder** f from the original space \mathcal{X} to a **latent** space \mathcal{F}, and a **decoder** g to map back to \mathcal{X} (Bourlard and Kamp, 1988; Hinton and Zemel, 1994).
An autoencoder maps a space to itself and is [close to] the identity on the data.

Dimension reduction can be achieved with an autoencoder composed of an **encoder** f from the original space \mathcal{X} to a **latent** space \mathcal{F}, and a **decoder** g to map back to \mathcal{X} (Bourlard and Kamp, 1988; Hinton and Zemel, 1994).
An autoencoder maps a space to itself and is [close to] the identity on the data.

Dimension reduction can be achieved with an autoencoder composed of an **encoder** f from the original space \mathcal{X} to a **latent** space \mathcal{F}, and a **decoder** g to map back to \mathcal{X} (Bourlard and Kamp, 1988; Hinton and Zemel, 1994).
An autoencoder maps a space to itself and is [close to] the identity on the data.

Dimension reduction can be achieved with an autoencoder composed of an encoder f from the original space \mathcal{X} to a latent space \mathcal{F}, and a decoder g to map back to \mathcal{X} (Bourlard and Kamp, 1988; Hinton and Zemel, 1994).
An autoencoder maps a space to itself and is [close to] the identity on the data.

Dimension reduction can be achieved with an autoencoder composed of an **encoder** f from the original space \mathcal{X} to a **latent** space \mathcal{F}, and a **decoder** g to map back to \mathcal{X} (Bourlard and Kamp, 1988; Hinton and Zemel, 1994).

If the latent space is of lower dimension, the autoencoder has to capture a “good” parametrization, and in particular dependencies between components.
Let q be the data distribution over \mathcal{X}. A good autoencoder could be characterized with the quadratic loss

$$
\mathbb{E}_{X \sim q}[\|X - g \circ f(X)\|^2] \approx 0.
$$
Let q be the data distribution over \mathcal{X}. A good autoencoder could be characterized with the quadratic loss

$$
\mathbb{E}_{X \sim q} \left[\| X - g \circ f(X) \|^2 \right] \simeq 0.
$$

Given two parametrized mappings $f(\cdot; w_f)$ and $g(\cdot; w_g)$, training consists of minimizing an empirical estimate of that loss

$$
\hat{w}_f, \hat{w}_g = \arg\min_{w_f, w_g} \frac{1}{N} \sum_{n=1}^{N} \| x_n - g(f(x_n; w_f); w_g) \|^2.
$$
Let q be the data distribution over \mathcal{X}. A good autoencoder could be characterized with the quadratic loss

$$
\mathbb{E}_{X \sim q} \left[\| X - g \circ f(X) \|^2 \right] \approx 0.
$$

Given two parametrized mappings $f(\cdot; w_f)$ and $g(\cdot; w_g)$, training consists of minimizing an empirical estimate of that loss

$$
\hat{w}_f, \hat{w}_g = \arg\min_{w_f, w_g} \frac{1}{N} \sum_{n=1}^{N} \| x_n - g(f(x_n; w_f); w_g) \|^2.
$$

A simple example of such an autoencoder would be with both f and g linear, in which case the optimal solution is given by PCA.
Let q be the data distribution over \mathcal{X}. A good autoencoder could be characterized with the quadratic loss

$$
\mathbb{E}_{X \sim q} \left[\| X - g \circ f(X) \|^2 \right] \approx 0.
$$

Given two parametrized mappings $f(\cdot; w_f)$ and $g(\cdot; w_g)$, training consists of minimizing an empirical estimate of that loss

$$
\hat{w}_f, \hat{w}_g = \arg\min_{w_f, w_g} \frac{1}{N} \sum_{n=1}^{N} \| x_n - g(f(x_n; w_f); w_g) \|^2.
$$

A simple example of such an autoencoder would be with both f and g linear, in which case the optimal solution is given by PCA. Better results can be achieved with more sophisticated classes of mappings, in particular deep architectures.
Deep Autoencoders
A deep autoencoder combines an encoder composed of convolutional layers, with a decoder composed of transposed convolutions or other interpolating layers. E.g. for MNIST:

AutoEncoder (
 (encoder): Sequential (
 (0): Conv2d(1, 32, kernel_size=(5, 5), stride=(1, 1))
 (1): ReLU (inplace)
 (2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1))
 (3): ReLU (inplace)
 (4): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2))
 (5): ReLU (inplace)
 (6): Conv2d(32, 32, kernel_size=(3, 3), stride=(2, 2))
 (7): ReLU (inplace)
 (8): Conv2d(32, 8, kernel_size=(4, 4), stride=(1, 1))
)
 (decoder): Sequential (
 (0): ConvTranspose2d(8, 32, kernel_size=(4, 4), stride=(1, 1))
 (1): ReLU (inplace)
 (2): ConvTranspose2d(32, 32, kernel_size=(3, 3), stride=(2, 2))
 (3): ReLU (inplace)
 (4): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2))
 (5): ReLU (inplace)
 (6): ConvTranspose2d(32, 32, kernel_size=(5, 5), stride=(1, 1))
 (7): ReLU (inplace)
 (8): ConvTranspose2d(32, 1, kernel_size=(5, 5), stride=(1, 1))
)
)
Encoder

Tensor sizes / operations

\[
\begin{align*}
1 \times 28 \times 28 \\
nn.Conv2d(1, 32, \text{kernel_size}=5, \text{stride}=1) & \quad 28 \\
32 \times 24 \times 24 \\
nn.Conv2d(32, 32, \text{kernel_size}=5, \text{stride}=1) & \quad 24 \\
32 \times 20 \times 20 \\
nn.Conv2d(32, 32, \text{kernel_size}=4, \text{stride}=2) & \quad 20 \\
32 \times 9 \times 9 \\
nn.Conv2d(32, 32, \text{kernel_size}=3, \text{stride}=2) & \quad 9 \\
32 \times 4 \times 4 \\
nn.Conv2d(32, 8, \text{kernel_size}=4, \text{stride}=1) & \quad 4 \\
8 \times 1 \times 1
\end{align*}
\]
Decoder

Tensor sizes / operations

8×1×1

nn.ConvTranspose2d(8, 32, kernel_size=4, stride=1) ×1

32×4×4

nn.ConvTranspose2d(32, 32, kernel_size=3, stride=2) ×4

32×9×9

nn.ConvTranspose2d(32, 32, kernel_size=4, stride=2) ×9

32×20×20

nn.ConvTranspose2d(32, 32, kernel_size=5, stride=1) ×20

32×24×24

nn.ConvTranspose2d(32, 1, kernel_size=5, stride=1) ×24

1×28×28
Training is achieved with quadratic loss and Adam

```python
model = AutoEncoder(nb_channels, embedding_dim)

optimizer = optim.Adam(model.parameters(), lr = 1e-3)

for epoch in range(args.nb_epochs):
    for input in train_input.split(batch_size):
        z = model.encode(input)
        output = model.decode(z)
        loss = 0.5 * (output - input).pow(2).sum() / input.size(0)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
```
X (original samples)

$g \circ f(X)$ (CNN, $d = 2$)

$g \circ f(X)$ (PCA, $d = 2$)
X (original samples)

$g \circ f(X)$ (CNN, $d = 4$)

$g \circ f(X)$ (PCA, $d = 4$)
\(X \) (original samples)

\[
\begin{array}{cccccccc}
7 & 2 & 1 & 0 & 4 & 1 & 4 & 6 \\
9 & 0 & 1 & 5 & 9 & 7 & 8 & 4 \\
4 & 0 & 7 & 4 & 0 & 1 & 3 & 1 \\
\end{array}
\]

\(g \circ f(X) \) (CNN, \(d = 8 \))

\[
\begin{array}{cccccccc}
7 & 2 & 1 & 0 & 4 & 1 & 4 & 6 \\
9 & 0 & 1 & 5 & 9 & 7 & 8 & 4 \\
4 & 0 & 7 & 4 & 0 & 1 & 3 & 1 \\
\end{array}
\]

\(g \circ f(X) \) (PCA, \(d = 8 \))

\[
\begin{array}{cccccccc}
7 & 3 & 1 & 0 & 4 & 1 & 4 & 6 \\
9 & 0 & 1 & 6 & 9 & 7 & 8 & 4 \\
4 & 0 & 4 & 8 & 1 & 3 & 1 & 3 \\
\end{array}
\]
X (original samples)

$g \circ f(X)$ (CNN, $d = 16$)

$g \circ f(X)$ (PCA, $d = 16$)
\[g \circ f(X) \text{ (CNN, } d = 32) \]

\[g \circ f(X) \text{ (PCA, } d = 32) \]
To get an intuition of the latent representation, we can pick two samples x and x' at random and interpolate samples along the line in the latent space.

$$\forall x, x' \in \mathcal{X}^2, \alpha \in [0, 1], \quad \xi(x, x', \alpha) = g((1 - \alpha)f(x) + \alpha f(x')).$$
To get an intuition of the latent representation, we can pick two samples x and x' at random and interpolate samples along the line in the latent space

$$\forall x, x' \in \mathcal{X}^2, \alpha \in [0, 1], \quad \xi(x, x', \alpha) = g((1 - \alpha)f(x) + \alpha f(x')).$$
To get an intuition of the latent representation, we can pick two samples x and x' at random and interpolate samples along the line in the latent space

$$\forall x, x' \in \mathcal{X}^2, \alpha \in [0, 1], \quad \xi(x, x', \alpha) = g((1 - \alpha)f(x) + \alpha f(x')).$$
To get an intuition of the latent representation, we can pick two samples \(x \) and \(x' \) at random and interpolate samples along the line in the latent space.

\[
\forall x, x' \in \mathcal{X}^2, \quad \alpha \in [0, 1], \quad \xi(x, x', \alpha) = g((1 - \alpha)f(x) + \alpha f(x')).
\]
PCA interpolation \((d = 32)\)
Autoencoder interpolation ($d = 8$)
Autoencoder interpolation ($d = 32$)
And we can assess the generative capabilities of the decoder g by introducing a [simple] density model q^Z over the latent space \mathcal{F}, sample there, and map the samples into the image space \mathcal{X} with g.
And we can assess the generative capabilities of the decoder g by introducing a [simple] density model q^Z over the latent space \mathcal{F}, sample there, and map the samples into the image space \mathcal{X} with g.

We can for instance use a Gaussian model with diagonal covariance matrix.

$$f(X) \sim \mathcal{N}(\hat{m}, \hat{\Delta})$$

where \hat{m} is a vector and $\hat{\Delta}$ a diagonal matrix, both estimated on training data.
And we can assess the generative capabilities of the decoder g by introducing a [simple] density model q^Z over the latent space \mathcal{F}, sample there, and map the samples into the image space \mathcal{X} with g.

We can for instance use a Gaussian model with diagonal covariance matrix.

$$f(X) \sim \mathcal{N}(\hat{m}, \hat{\Delta})$$

where \hat{m} is a vector and $\hat{\Delta}$ a diagonal matrix, both estimated on training data.
And we can assess the generative capabilities of the decoder g by introducing a [simple] density model q_Z over the latent space \mathcal{F}, sample there, and map the samples into the image space \mathcal{X} with g.

We can for instance use a Gaussian model with diagonal covariance matrix.

$$f(X) \sim \mathcal{N}(\hat{m}, \hat{\Delta})$$

where \hat{m} is a vector and $\hat{\Delta}$ a diagonal matrix, both estimated on training data.
And we can assess the generative capabilities of the decoder g by introducing a [simple] density model q^Z over the latent space \mathcal{F}, sample there, and map the samples into the image space \mathcal{X} with g.

We can for instance use a Gaussian model with diagonal covariance matrix.

$$f(X) \sim \mathcal{N}(\hat{m}, \hat{\Delta})$$

where \hat{m} is a vector and $\hat{\Delta}$ a diagonal matrix, both estimated on training data.
And we can assess the generative capabilities of the decoder g by introducing a [simple] density model q^Z over the latent space \mathcal{F}, sample there, and map the samples into the image space \mathcal{X} with g.

We can for instance use a Gaussian model with diagonal covariance matrix.

$$f(X) \sim \mathcal{N}(\hat{m}, \hat{\Delta})$$

where \hat{m} is a vector and $\hat{\Delta}$ a diagonal matrix, both estimated on training data.
Autoencoder sampling ($d = 8$)

Autoencoder sampling ($d = 16$)

Autoencoder sampling ($d = 32$)
These results are unsatisfying, because the density model used on the latent space \mathcal{F} is too simple and inadequate.

Building a “good” model amounts to our original problem of modeling an empirical distribution, although it may now be in a lower dimension space.
The end
References
