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The “Highway networks” by Srivastava et al. (2015) use the idea of gating
developed for recurrent units. It replaces a standard non-linear layer

y = H(x ;WH)

with a layer that includes a “gated” pass-through

y = T (x ;WT )H(x ;WH) + (1− T (x ;WT ))x

where T (x ;WT ) ∈ [0, 1] modulates how much the signal should be transformed.

. . . H

× (1−T )

×T + . . .

Initializing T ’s parameters so that T ≃ 0 at first, assures that gradients will
pass through, and allows to train networks with up to 100 layers.

François Fleuret Deep learning / 6.5. Residual networks 1 / 21



The residual networks proposed by He et al. (2015) simplify the idea and use a
building block with a skip connection.

. . . Linear BN ReLU Linear BN

ReLU . . .++ ReLU . . .

skip connectionskip connection

Thanks to this structure, the parameters are optimized to learn a residual, that
is the difference between the value before the block and the one needed after.
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We can implement such a network for MNIST, composed of:

• A first convolution layer conv0 with kernels 1× 1 to convert the tensor
from 1× 28× 28 to nb_channels×28× 28,

• a series of ResBlocks, each composed of two convolution layers and two
batch normalization layers, that maintains the tensor size unchanged,

• an average poling layer avg that produces an output of size
nb_channels×1× 1,

• a fully connected layer fc to make the final prediction.

François Fleuret Deep learning / 6.5. Residual networks 3 / 21



. . . x conv1 bn1 relu conv2 bn2 y + relu . . .

class ResBlock(nn.Module):
def __init__(self, nb_channels, kernel_size):

super().__init__()

self.conv1 = nn.Conv2d(nb_channels, nb_channels, kernel_size,
padding = (kernel_size-1)//2)

self.bn1 = nn.BatchNorm2d(nb_channels)

self.conv2 = nn.Conv2d(nb_channels, nb_channels, kernel_size,
padding = (kernel_size-1)//2)

self.bn2 = nn.BatchNorm2d(nb_channels)

def forward(self, x):
y = self.bn1(self.conv1(x))
y = F.relu(y)
y = self.bn2(self.conv2(y))
y += x
y = F.relu(y)
return y
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class ResNet(nn.Module):
def __init__(self, nb_channels, kernel_size, nb_blocks):

super().__init__()

self.conv0 = nn.Conv2d(1, nb_channels, kernel_size = 1)

self.resblocks = nn.Sequential(
# A bit of fancy Python
*(ResBlock(nb_channels, kernel_size) for _ in range(nb_blocks))

)

self.avg = nn.AvgPool2d(kernel_size = 28)
self.fc = nn.Linear(nb_channels, 10)

def forward(self, x):
x = F.relu(self.conv0(x))
x = self.resblocks(x)
x = F.relu(self.avg(x))
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
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With 25 residual blocks, 16 channels, and convolution kernels of size 3× 3, we
get the following structure, with 117, 802 parameters.

ResNet(

(conv0): Conv2d(1, 16, kernel_size=(1, 1), stride=(1, 1))

(resblocks): Sequential(

(0): ResBlock(

(conv1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(conv2): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

/.../

(24): ResBlock(

(conv1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(conv2): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

)

(avg): AvgPool2d(kernel_size=28, stride=28, padding=0)

(fc): Linear(in_features=16, out_features=10, bias=True)

)
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A technical point for a more general use of a residual architecture is to deal with
convolution layers that change the activation map sizes or numbers of channels.

He et al. (2015) only consider:

• reducing the activation map size by a factor 2,

• increasing the number of channels.
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To reduce the activation map size by a factor 2, the identity pass-trough
extracts 1/4 of the activations over a regular grid (i.e. with a stride of 2),

. . . ϕ . . .

+ . . .
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To increase the number of channels from C to C ′, they propose to either:

• pad the original value with C ′ − C zeros, which amounts to adding as
many zeroed channels, or

• use C ′ convolutions with a 1× 1× C filter, which corresponds to applying

the same fully-connected linear model RC → RC ′
at every location.
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Finally, He et al.’s residual networks are fully convolutional, which means they
have no fully connected layers. We will come back to this.

Their one-before last layer is a per-channel global average pooling that outputs
a 1d tensor, fed into a single fully-connected layer.
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Figure 3. Example network architectures for ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-
dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.

Residual Network. Based on the above plain network, we
insert shortcut connections (Fig. 3, right) which turn the
network into its counterpart residual version. The identity
shortcuts (Eqn.(1)) can be directly used when the input and
output are of the same dimensions (solid line shortcuts in
Fig. 3). When the dimensions increase (dotted line shortcuts
in Fig. 3), we consider two options: (A) The shortcut still
performs identity mapping, with extra zero entries padded
for increasing dimensions. This option introduces no extra
parameter; (B) The projection shortcut in Eqn.(2) is used to
match dimensions (done by 1×1 convolutions). For both
options, when the shortcuts go across feature maps of two
sizes, they are performed with a stride of 2.

3.4. Implementation

Our implementation for ImageNet follows the practice
in [21, 41]. The image is resized with its shorter side ran-
domly sampled in [256, 480] for scale augmentation [41].
A 224×224 crop is randomly sampled from an image or its
horizontal flip, with the per-pixel mean subtracted [21]. The
standard color augmentation in [21] is used. We adopt batch
normalization (BN) [16] right after each convolution and
before activation, following [16]. We initialize the weights
as in [13] and train all plain/residual nets from scratch. We
use SGD with a mini-batch size of 256. The learning rate
starts from 0.1 and is divided by 10 when the error plateaus,
and the models are trained for up to 60× 104 iterations. We
use a weight decay of 0.0001 and a momentum of 0.9. We
do not use dropout [14], following the practice in [16].

In testing, for comparison studies we adopt the standard
10-crop testing [21]. For best results, we adopt the fully-
convolutional form as in [41, 13], and average the scores
at multiple scales (images are resized such that the shorter
side is in {224, 256, 384, 480, 640}).

4. Experiments
4.1. ImageNet Classification

We evaluate our method on the ImageNet 2012 classifi-
cation dataset [36] that consists of 1000 classes. The models
are trained on the 1.28 million training images, and evalu-
ated on the 50k validation images. We also obtain a final
result on the 100k test images, reported by the test server.
We evaluate both top-1 and top-5 error rates.

Plain Networks. We first evaluate 18-layer and 34-layer
plain nets. The 34-layer plain net is in Fig. 3 (middle). The
18-layer plain net is of a similar form. See Table 1 for de-
tailed architectures.

The results in Table 2 show that the deeper 34-layer plain
net has higher validation error than the shallower 18-layer
plain net. To reveal the reasons, in Fig. 4 (left) we com-
pare their training/validation errors during the training pro-
cedure. We have observed the degradation problem - the

4

(He et al., 2015)
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Performance on ImageNet.

layer name output size 18-layer 34-layer 50-layer 101-layer 152-layer
conv1 112×112 7×7, 64, stride 2

conv2 x 56×56

3×3 max pool, stride 2
[

3×3, 64
3×3, 64

]
×2

[
3×3, 64
3×3, 64

]
×3




1×1, 64
3×3, 64

1×1, 256


×3




1×1, 64
3×3, 64

1×1, 256


×3




1×1, 64
3×3, 64

1×1, 256


×3

conv3 x 28×28
[

3×3, 128
3×3, 128

]
×2

[
3×3, 128
3×3, 128

]
×4




1×1, 128
3×3, 128
1×1, 512


×4




1×1, 128
3×3, 128
1×1, 512


×4




1×1, 128
3×3, 128
1×1, 512


×8

conv4 x 14×14
[

3×3, 256
3×3, 256

]
×2

[
3×3, 256
3×3, 256

]
×6




1×1, 256
3×3, 256
1×1, 1024


×6




1×1, 256
3×3, 256
1×1, 1024


×23




1×1, 256
3×3, 256

1×1, 1024


×36

conv5 x 7×7
[

3×3, 512
3×3, 512

]
×2

[
3×3, 512
3×3, 512

]
×3




1×1, 512
3×3, 512
1×1, 2048


×3




1×1, 512
3×3, 512

1×1, 2048


×3




1×1, 512
3×3, 512
1×1, 2048


×3

1×1 average pool, 1000-d fc, softmax
FLOPs 1.8×109 3.6×109 3.8×109 7.6×109 11.3×109

Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Down-
sampling is performed by conv3 1, conv4 1, and conv5 1 with a stride of 2.
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Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to
their plain counterparts.

plain ResNet
18 layers 27.94 27.88
34 layers 28.54 25.03

Table 2. Top-1 error (%, 10-crop testing) on ImageNet validation.
Here the ResNets have no extra parameter compared to their plain
counterparts. Fig. 4 shows the training procedures.

34-layer plain net has higher training error throughout the
whole training procedure, even though the solution space
of the 18-layer plain network is a subspace of that of the
34-layer one.

We argue that this optimization difficulty is unlikely to
be caused by vanishing gradients. These plain networks are
trained with BN [16], which ensures forward propagated
signals to have non-zero variances. We also verify that the
backward propagated gradients exhibit healthy norms with
BN. So neither forward nor backward signals vanish. In
fact, the 34-layer plain net is still able to achieve compet-
itive accuracy (Table 3), suggesting that the solver works
to some extent. We conjecture that the deep plain nets may
have exponentially low convergence rates, which impact the

reducing of the training error3. The reason for such opti-
mization difficulties will be studied in the future.

Residual Networks. Next we evaluate 18-layer and 34-
layer residual nets (ResNets). The baseline architectures
are the same as the above plain nets, expect that a shortcut
connection is added to each pair of 3×3 filters as in Fig. 3
(right). In the first comparison (Table 2 and Fig. 4 right),
we use identity mapping for all shortcuts and zero-padding
for increasing dimensions (option A). So they have no extra
parameter compared to the plain counterparts.

We have three major observations from Table 2 and
Fig. 4. First, the situation is reversed with residual learn-
ing – the 34-layer ResNet is better than the 18-layer ResNet
(by 2.8%). More importantly, the 34-layer ResNet exhibits
considerably lower training error and is generalizable to the
validation data. This indicates that the degradation problem
is well addressed in this setting and we manage to obtain
accuracy gains from increased depth.

Second, compared to its plain counterpart, the 34-layer

3We have experimented with more training iterations (3×) and still ob-
served the degradation problem, suggesting that this problem cannot be
feasibly addressed by simply using more iterations.

5

(He et al., 2015)
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He et al. (2016) proposed to sequence operations in a residual block so that the
main “pathway” has no non-linearity. This results in substantial improvements.

. . . Linear BN ReLU Linear BN + ReLU . . .

Original (He et al., 2015)

. . . BN ReLU Linear BN ReLU Linear + . . .

Identity residual (He et al., 2016)
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Veit et al. (2016) interpret a residual network as an ensemble, which explains in
part its stability.

E.g., with three blocks we have

x1 = x0 + f1(x0)

x2 = x1 + f2(x1)

x3 = x2 + f3(x2)

hence there are four “paths”:

x3 = x2 + f3(x2)

= x1 + f2(x1) + f3(x1 + f2(x1))

= x0 + f1(x0)+ f2(x0 + f1(x0))+ f3(x0 + f1(x0) + f2(x0 + f1(x0))) .

Veit et al. show that (1) performance reduction correlates with the number of
paths removed from the ensemble, not with the number of blocks removed, (2)
only gradients through shallow paths matter during train.
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An extension of the residual network, is the stochastic depth network.

“Stochastic depth aims to shrink the depth of a network during training,
while keeping it unchanged during testing. We can achieve this goal by
randomly dropping entire ResBlocks during training and bypassing their
transformations through skip connections.”

(Huang et al., 2016)

. . . Φ + Φ + Φ + . . .
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Shattered Gradient
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Balduzzi et al. (2017) points out that depth “shatters” the relation between the
input and the gradient w.r.t. the input, and that Resnets mitigate this effect.

The Shattered Gradients Problem
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(a) 1-layer feedforward. (b) 24-layer feedforward. (c) 50-layer resnet. (d) Brown noise. (e) White noise.

Figure 1: Comparison between noise and gradients of rectifier nets with 200 neurons per hidden layer. Columns
d–e: brown and white noise. Columns a–c: Gradients of neural nets plotted for inputs taken from a uniform grid. The
24-layer net uses mean-centering. The 50-layer net uses batch normalization with β = 0.1, see Eq. (2).

tion, as a function of the input:

dfW
dx

(x(i)) where x(i) ∈ [−2, 2] is in a (1)

1-dim grid of M = 256 “data points”.

Updates during training depend on derivatives with respect
to weights, not inputs. Our results are relevant because, by
the chain rule, ∂fW∂wij

= ∂fW
∂nj

∂nj

∂wij
. Weight updates thus de-

pend on ∂fW
∂nj

—i.e. how the output of the network varies
with the output of neurons in one layer (which are just in-
puts to the next layer).

The top row of figure 1 plots dfW
dx (x(i)) for each point x(i)

in the 1-dim grid. The bottom row shows the (absolute
value) of the covariance matrix: |(g − ḡ)(g − ḡ)>|/σ2

g

where g is the 256-vector of gradients, ḡ the mean, and σ2
g

the variance.

If all the neurons were linear then the gradient would be
a horizontal line (i.e. the gradient would be constant as a
function of x). Rectifiers are not smooth, so the gradients
are discontinuous.

Gradients of shallow networks resemble brown noise.
Suppose the network has a single hidden layer: fw,b(x) =
w>ρ(x · v − b). Following Glorot & Bengio (2010),
weights w and biases b are sampled from N (0, σ2) with
σ2 = 1

N . Set v = (1, . . . , 1).

Figure 1a shows the gradient of the network for inputs
x ∈ [−2, 2] and its covariance matrix. Figure 1d shows
a discrete approximation to brownian motion: BN (t) =∑t
s=1Ws where Ws ∼ N (0, 1

N ). The plots are strikingly
similar: both clearly exhibit spatial covariance structure.
The resemblance is not coincidental: section A1 applies

Donsker’s theorem to show the gradient converges to brow-
nian motion as N →∞.

Gradients of deep networks resemble white noise. Fig-
ure 1b shows the gradient of a 24-layer fully-connected rec-
tifier network. Figure 1e shows white noise given by sam-
ples Wk ∼ N (0, 1). Again, the plots are strikingly similar.

Since the inputs lie on a 1-dim grid, it makes sense to
compute the autocorrelation function (ACF) of the gradi-
ent. Figures 2a and 2d compare this function for feed-
forward networks of different depth with white and brown
noise. The ACF for shallow networks resembles the ACF
of brown noise. As the network gets deeper, the ACF
quickly comes to resemble that of white noise.

Theorem 1 explains this phenomenon. We show that corre-
lations between gradients decrease exponentially 1

2L
with

depth in feedforward rectifier networks.

Training is difficult when gradients behave like white
noise. The shattered gradient problem is that the spatial
structure of gradients is progressively obliterated as neural
nets deepen. The problem is clearly visible when inputs
are taken from a one-dimensional grid, but is difficult to
observe when inputs are randomly sampled from a high-
dimensional dataset.

Shattered gradients undermine the effectiveness of algo-
rithms that assume gradients at nearby points are sim-
ilar such as momentum-based and accelerated methods
(Sutskever et al., 2013; Balduzzi et al., 2016). If dfW

dnj
be-

haves like white noise, then a neuron’s effect on the output
of the network (whether increasing weights causes the net-
work to output more or less) becomes extremely unstable
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(a) 1-layer feedforward. (b) 24-layer feedforward. (c) 50-layer resnet. (d) Brown noise. (e) White noise.

Figure 1: Comparison between noise and gradients of rectifier nets with 200 neurons per hidden layer. Columns
d–e: brown and white noise. Columns a–c: Gradients of neural nets plotted for inputs taken from a uniform grid. The
24-layer net uses mean-centering. The 50-layer net uses batch normalization with β = 0.1, see Eq. (2).

tion, as a function of the input:

dfW
dx

(x(i)) where x(i) ∈ [−2, 2] is in a (1)

1-dim grid of M = 256 “data points”.

Updates during training depend on derivatives with respect
to weights, not inputs. Our results are relevant because, by
the chain rule, ∂fW∂wij

= ∂fW
∂nj

∂nj

∂wij
. Weight updates thus de-

pend on ∂fW
∂nj

—i.e. how the output of the network varies
with the output of neurons in one layer (which are just in-
puts to the next layer).

The top row of figure 1 plots dfW
dx (x(i)) for each point x(i)

in the 1-dim grid. The bottom row shows the (absolute
value) of the covariance matrix: |(g − ḡ)(g − ḡ)>|/σ2

g

where g is the 256-vector of gradients, ḡ the mean, and σ2
g

the variance.

If all the neurons were linear then the gradient would be
a horizontal line (i.e. the gradient would be constant as a
function of x). Rectifiers are not smooth, so the gradients
are discontinuous.

Gradients of shallow networks resemble brown noise.
Suppose the network has a single hidden layer: fw,b(x) =
w>ρ(x · v − b). Following Glorot & Bengio (2010),
weights w and biases b are sampled from N (0, σ2) with
σ2 = 1

N . Set v = (1, . . . , 1).

Figure 1a shows the gradient of the network for inputs
x ∈ [−2, 2] and its covariance matrix. Figure 1d shows
a discrete approximation to brownian motion: BN (t) =∑t
s=1Ws where Ws ∼ N (0, 1

N ). The plots are strikingly
similar: both clearly exhibit spatial covariance structure.
The resemblance is not coincidental: section A1 applies

Donsker’s theorem to show the gradient converges to brow-
nian motion as N →∞.

Gradients of deep networks resemble white noise. Fig-
ure 1b shows the gradient of a 24-layer fully-connected rec-
tifier network. Figure 1e shows white noise given by sam-
ples Wk ∼ N (0, 1). Again, the plots are strikingly similar.

Since the inputs lie on a 1-dim grid, it makes sense to
compute the autocorrelation function (ACF) of the gradi-
ent. Figures 2a and 2d compare this function for feed-
forward networks of different depth with white and brown
noise. The ACF for shallow networks resembles the ACF
of brown noise. As the network gets deeper, the ACF
quickly comes to resemble that of white noise.

Theorem 1 explains this phenomenon. We show that corre-
lations between gradients decrease exponentially 1

2L
with

depth in feedforward rectifier networks.

Training is difficult when gradients behave like white
noise. The shattered gradient problem is that the spatial
structure of gradients is progressively obliterated as neural
nets deepen. The problem is clearly visible when inputs
are taken from a one-dimensional grid, but is difficult to
observe when inputs are randomly sampled from a high-
dimensional dataset.

Shattered gradients undermine the effectiveness of algo-
rithms that assume gradients at nearby points are sim-
ilar such as momentum-based and accelerated methods
(Sutskever et al., 2013; Balduzzi et al., 2016). If dfW

dnj
be-

haves like white noise, then a neuron’s effect on the output
of the network (whether increasing weights causes the net-
work to output more or less) becomes extremely unstable

(Balduzzi et al., 2017)

Since linear networks avoid this problem, they suggest to combine CReLU (see
lecture 6.2. “Rectifiers”) with a Looks Linear initialization that makes the
network linear initially.
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(a) 1-layer feedforward. (b) 24-layer feedforward. (c) 50-layer resnet. (d) Brown noise. (e) White noise.

Figure 1: Comparison between noise and gradients of rectifier nets with 200 neurons per hidden layer. Columns
d–e: brown and white noise. Columns a–c: Gradients of neural nets plotted for inputs taken from a uniform grid. The
24-layer net uses mean-centering. The 50-layer net uses batch normalization with β = 0.1, see Eq. (2).

tion, as a function of the input:

dfW
dx

(x(i)) where x(i) ∈ [−2, 2] is in a (1)

1-dim grid of M = 256 “data points”.

Updates during training depend on derivatives with respect
to weights, not inputs. Our results are relevant because, by
the chain rule, ∂fW∂wij

= ∂fW
∂nj

∂nj

∂wij
. Weight updates thus de-

pend on ∂fW
∂nj

—i.e. how the output of the network varies
with the output of neurons in one layer (which are just in-
puts to the next layer).

The top row of figure 1 plots dfW
dx (x(i)) for each point x(i)

in the 1-dim grid. The bottom row shows the (absolute
value) of the covariance matrix: |(g − ḡ)(g − ḡ)>|/σ2

g

where g is the 256-vector of gradients, ḡ the mean, and σ2
g

the variance.

If all the neurons were linear then the gradient would be
a horizontal line (i.e. the gradient would be constant as a
function of x). Rectifiers are not smooth, so the gradients
are discontinuous.

Gradients of shallow networks resemble brown noise.
Suppose the network has a single hidden layer: fw,b(x) =
w>ρ(x · v − b). Following Glorot & Bengio (2010),
weights w and biases b are sampled from N (0, σ2) with
σ2 = 1

N . Set v = (1, . . . , 1).

Figure 1a shows the gradient of the network for inputs
x ∈ [−2, 2] and its covariance matrix. Figure 1d shows
a discrete approximation to brownian motion: BN (t) =∑t
s=1Ws where Ws ∼ N (0, 1

N ). The plots are strikingly
similar: both clearly exhibit spatial covariance structure.
The resemblance is not coincidental: section A1 applies

Donsker’s theorem to show the gradient converges to brow-
nian motion as N →∞.

Gradients of deep networks resemble white noise. Fig-
ure 1b shows the gradient of a 24-layer fully-connected rec-
tifier network. Figure 1e shows white noise given by sam-
ples Wk ∼ N (0, 1). Again, the plots are strikingly similar.

Since the inputs lie on a 1-dim grid, it makes sense to
compute the autocorrelation function (ACF) of the gradi-
ent. Figures 2a and 2d compare this function for feed-
forward networks of different depth with white and brown
noise. The ACF for shallow networks resembles the ACF
of brown noise. As the network gets deeper, the ACF
quickly comes to resemble that of white noise.

Theorem 1 explains this phenomenon. We show that corre-
lations between gradients decrease exponentially 1

2L
with

depth in feedforward rectifier networks.

Training is difficult when gradients behave like white
noise. The shattered gradient problem is that the spatial
structure of gradients is progressively obliterated as neural
nets deepen. The problem is clearly visible when inputs
are taken from a one-dimensional grid, but is difficult to
observe when inputs are randomly sampled from a high-
dimensional dataset.

Shattered gradients undermine the effectiveness of algo-
rithms that assume gradients at nearby points are sim-
ilar such as momentum-based and accelerated methods
(Sutskever et al., 2013; Balduzzi et al., 2016). If dfW

dnj
be-

haves like white noise, then a neuron’s effect on the output
of the network (whether increasing weights causes the net-
work to output more or less) becomes extremely unstable
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(a) 1-layer feedforward. (b) 24-layer feedforward. (c) 50-layer resnet. (d) Brown noise. (e) White noise.

Figure 1: Comparison between noise and gradients of rectifier nets with 200 neurons per hidden layer. Columns
d–e: brown and white noise. Columns a–c: Gradients of neural nets plotted for inputs taken from a uniform grid. The
24-layer net uses mean-centering. The 50-layer net uses batch normalization with β = 0.1, see Eq. (2).

tion, as a function of the input:

dfW
dx

(x(i)) where x(i) ∈ [−2, 2] is in a (1)

1-dim grid of M = 256 “data points”.

Updates during training depend on derivatives with respect
to weights, not inputs. Our results are relevant because, by
the chain rule, ∂fW∂wij

= ∂fW
∂nj

∂nj

∂wij
. Weight updates thus de-

pend on ∂fW
∂nj

—i.e. how the output of the network varies
with the output of neurons in one layer (which are just in-
puts to the next layer).

The top row of figure 1 plots dfW
dx (x(i)) for each point x(i)

in the 1-dim grid. The bottom row shows the (absolute
value) of the covariance matrix: |(g − ḡ)(g − ḡ)>|/σ2

g

where g is the 256-vector of gradients, ḡ the mean, and σ2
g

the variance.

If all the neurons were linear then the gradient would be
a horizontal line (i.e. the gradient would be constant as a
function of x). Rectifiers are not smooth, so the gradients
are discontinuous.

Gradients of shallow networks resemble brown noise.
Suppose the network has a single hidden layer: fw,b(x) =
w>ρ(x · v − b). Following Glorot & Bengio (2010),
weights w and biases b are sampled from N (0, σ2) with
σ2 = 1

N . Set v = (1, . . . , 1).

Figure 1a shows the gradient of the network for inputs
x ∈ [−2, 2] and its covariance matrix. Figure 1d shows
a discrete approximation to brownian motion: BN (t) =∑t
s=1Ws where Ws ∼ N (0, 1

N ). The plots are strikingly
similar: both clearly exhibit spatial covariance structure.
The resemblance is not coincidental: section A1 applies

Donsker’s theorem to show the gradient converges to brow-
nian motion as N →∞.

Gradients of deep networks resemble white noise. Fig-
ure 1b shows the gradient of a 24-layer fully-connected rec-
tifier network. Figure 1e shows white noise given by sam-
ples Wk ∼ N (0, 1). Again, the plots are strikingly similar.

Since the inputs lie on a 1-dim grid, it makes sense to
compute the autocorrelation function (ACF) of the gradi-
ent. Figures 2a and 2d compare this function for feed-
forward networks of different depth with white and brown
noise. The ACF for shallow networks resembles the ACF
of brown noise. As the network gets deeper, the ACF
quickly comes to resemble that of white noise.

Theorem 1 explains this phenomenon. We show that corre-
lations between gradients decrease exponentially 1

2L
with

depth in feedforward rectifier networks.

Training is difficult when gradients behave like white
noise. The shattered gradient problem is that the spatial
structure of gradients is progressively obliterated as neural
nets deepen. The problem is clearly visible when inputs
are taken from a one-dimensional grid, but is difficult to
observe when inputs are randomly sampled from a high-
dimensional dataset.

Shattered gradients undermine the effectiveness of algo-
rithms that assume gradients at nearby points are sim-
ilar such as momentum-based and accelerated methods
(Sutskever et al., 2013; Balduzzi et al., 2016). If dfW

dnj
be-

haves like white noise, then a neuron’s effect on the output
of the network (whether increasing weights causes the net-
work to output more or less) becomes extremely unstable

(Balduzzi et al., 2017)

Since linear networks avoid this problem, they suggest to combine CReLU (see
lecture 6.2. “Rectifiers”) with a Looks Linear initialization that makes the
network linear initially.
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(a) 1-layer feedforward. (b) 24-layer feedforward. (c) 50-layer resnet. (d) Brown noise. (e) White noise.

Figure 1: Comparison between noise and gradients of rectifier nets with 200 neurons per hidden layer. Columns
d–e: brown and white noise. Columns a–c: Gradients of neural nets plotted for inputs taken from a uniform grid. The
24-layer net uses mean-centering. The 50-layer net uses batch normalization with β = 0.1, see Eq. (2).

tion, as a function of the input:

dfW
dx

(x(i)) where x(i) ∈ [−2, 2] is in a (1)

1-dim grid of M = 256 “data points”.

Updates during training depend on derivatives with respect
to weights, not inputs. Our results are relevant because, by
the chain rule, ∂fW∂wij

= ∂fW
∂nj

∂nj

∂wij
. Weight updates thus de-

pend on ∂fW
∂nj

—i.e. how the output of the network varies
with the output of neurons in one layer (which are just in-
puts to the next layer).

The top row of figure 1 plots dfW
dx (x(i)) for each point x(i)

in the 1-dim grid. The bottom row shows the (absolute
value) of the covariance matrix: |(g − ḡ)(g − ḡ)>|/σ2

g

where g is the 256-vector of gradients, ḡ the mean, and σ2
g

the variance.

If all the neurons were linear then the gradient would be
a horizontal line (i.e. the gradient would be constant as a
function of x). Rectifiers are not smooth, so the gradients
are discontinuous.

Gradients of shallow networks resemble brown noise.
Suppose the network has a single hidden layer: fw,b(x) =
w>ρ(x · v − b). Following Glorot & Bengio (2010),
weights w and biases b are sampled from N (0, σ2) with
σ2 = 1

N . Set v = (1, . . . , 1).

Figure 1a shows the gradient of the network for inputs
x ∈ [−2, 2] and its covariance matrix. Figure 1d shows
a discrete approximation to brownian motion: BN (t) =∑t
s=1Ws where Ws ∼ N (0, 1

N ). The plots are strikingly
similar: both clearly exhibit spatial covariance structure.
The resemblance is not coincidental: section A1 applies

Donsker’s theorem to show the gradient converges to brow-
nian motion as N →∞.

Gradients of deep networks resemble white noise. Fig-
ure 1b shows the gradient of a 24-layer fully-connected rec-
tifier network. Figure 1e shows white noise given by sam-
ples Wk ∼ N (0, 1). Again, the plots are strikingly similar.

Since the inputs lie on a 1-dim grid, it makes sense to
compute the autocorrelation function (ACF) of the gradi-
ent. Figures 2a and 2d compare this function for feed-
forward networks of different depth with white and brown
noise. The ACF for shallow networks resembles the ACF
of brown noise. As the network gets deeper, the ACF
quickly comes to resemble that of white noise.

Theorem 1 explains this phenomenon. We show that corre-
lations between gradients decrease exponentially 1

2L
with

depth in feedforward rectifier networks.

Training is difficult when gradients behave like white
noise. The shattered gradient problem is that the spatial
structure of gradients is progressively obliterated as neural
nets deepen. The problem is clearly visible when inputs
are taken from a one-dimensional grid, but is difficult to
observe when inputs are randomly sampled from a high-
dimensional dataset.

Shattered gradients undermine the effectiveness of algo-
rithms that assume gradients at nearby points are sim-
ilar such as momentum-based and accelerated methods
(Sutskever et al., 2013; Balduzzi et al., 2016). If dfW

dnj
be-

haves like white noise, then a neuron’s effect on the output
of the network (whether increasing weights causes the net-
work to output more or less) becomes extremely unstable
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(a) 1-layer feedforward. (b) 24-layer feedforward. (c) 50-layer resnet. (d) Brown noise. (e) White noise.

Figure 1: Comparison between noise and gradients of rectifier nets with 200 neurons per hidden layer. Columns
d–e: brown and white noise. Columns a–c: Gradients of neural nets plotted for inputs taken from a uniform grid. The
24-layer net uses mean-centering. The 50-layer net uses batch normalization with β = 0.1, see Eq. (2).

tion, as a function of the input:

dfW
dx

(x(i)) where x(i) ∈ [−2, 2] is in a (1)

1-dim grid of M = 256 “data points”.

Updates during training depend on derivatives with respect
to weights, not inputs. Our results are relevant because, by
the chain rule, ∂fW∂wij

= ∂fW
∂nj

∂nj

∂wij
. Weight updates thus de-

pend on ∂fW
∂nj

—i.e. how the output of the network varies
with the output of neurons in one layer (which are just in-
puts to the next layer).

The top row of figure 1 plots dfW
dx (x(i)) for each point x(i)

in the 1-dim grid. The bottom row shows the (absolute
value) of the covariance matrix: |(g − ḡ)(g − ḡ)>|/σ2

g

where g is the 256-vector of gradients, ḡ the mean, and σ2
g

the variance.

If all the neurons were linear then the gradient would be
a horizontal line (i.e. the gradient would be constant as a
function of x). Rectifiers are not smooth, so the gradients
are discontinuous.

Gradients of shallow networks resemble brown noise.
Suppose the network has a single hidden layer: fw,b(x) =
w>ρ(x · v − b). Following Glorot & Bengio (2010),
weights w and biases b are sampled from N (0, σ2) with
σ2 = 1

N . Set v = (1, . . . , 1).

Figure 1a shows the gradient of the network for inputs
x ∈ [−2, 2] and its covariance matrix. Figure 1d shows
a discrete approximation to brownian motion: BN (t) =∑t
s=1Ws where Ws ∼ N (0, 1

N ). The plots are strikingly
similar: both clearly exhibit spatial covariance structure.
The resemblance is not coincidental: section A1 applies

Donsker’s theorem to show the gradient converges to brow-
nian motion as N →∞.

Gradients of deep networks resemble white noise. Fig-
ure 1b shows the gradient of a 24-layer fully-connected rec-
tifier network. Figure 1e shows white noise given by sam-
ples Wk ∼ N (0, 1). Again, the plots are strikingly similar.

Since the inputs lie on a 1-dim grid, it makes sense to
compute the autocorrelation function (ACF) of the gradi-
ent. Figures 2a and 2d compare this function for feed-
forward networks of different depth with white and brown
noise. The ACF for shallow networks resembles the ACF
of brown noise. As the network gets deeper, the ACF
quickly comes to resemble that of white noise.

Theorem 1 explains this phenomenon. We show that corre-
lations between gradients decrease exponentially 1

2L
with

depth in feedforward rectifier networks.

Training is difficult when gradients behave like white
noise. The shattered gradient problem is that the spatial
structure of gradients is progressively obliterated as neural
nets deepen. The problem is clearly visible when inputs
are taken from a one-dimensional grid, but is difficult to
observe when inputs are randomly sampled from a high-
dimensional dataset.

Shattered gradients undermine the effectiveness of algo-
rithms that assume gradients at nearby points are sim-
ilar such as momentum-based and accelerated methods
(Sutskever et al., 2013; Balduzzi et al., 2016). If dfW

dnj
be-

haves like white noise, then a neuron’s effect on the output
of the network (whether increasing weights causes the net-
work to output more or less) becomes extremely unstable

(Balduzzi et al., 2017)

Since linear networks avoid this problem, they suggest to combine CReLU (see
lecture 6.2. “Rectifiers”) with a Looks Linear initialization that makes the
network linear initially.
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Let σ(x) = max(0, x), and

Φ : RD → R2D

the CReLU non-linearity, i.e.

∀x ∈ RD , q = 1, . . . ,D,

{
Φ(x)2q−1 = σ(xq),
Φ(x)2q = σ(−xq)

and a weight matrix W̃ ∈ RD′×2D such that

∀j = 1, . . . ,D′, q = 1, . . . ,D, W̃j,2q−1 = −W̃j,2q = Wj,q .

So two neighboring columns of Φ(x) are the σ(·) and σ(−·) of a column of x ,
and two neighboring columns of W̃ are a column of W and its opposite.
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From this we get, ∀i = 1, . . . ,B, j = 1, . . . ,D′:

(
W̃Φ(x)

)
j
=

2D∑
k=1

W̃j,kΦ(x)k

=
D∑

q=1

W̃j,2q−1Φ(x)2q−1 + W̃j,2qΦ(x)2q

=
D∑

q=1

Wj,qσ(xq)−Wj,qσ(−xq)

=
D∑

q=1

Wj,qxq

= (Wx)j .

Hence
∀x , W̃Φ(x) = Wx

and doing this in every layer results in a linear network.
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The Shattered Gradients Problem
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Figure 6: CIFAR-10 test accuracy. Comparison of test ac-
curacy between networks of different depths with and with-
out LL initialization.

We briefly describe how we orthogonally initialize a kernel
K of size A × B × 3 × 3 where A ≥ B. First, set all the
entries of K to zero. Second, sample a random matrix W
of size (A × B) with orthonormal columns. Finally, set
K[:, :, 2, 2] := W. The kernel is used in conjunction with
strides of one and zero-padding.

5.1. Experiments

We investigated the empirical performance of the LL-init
on very deep networks. Performance was evaluated on
CIFAR-10. We conducted a set of proof-of-concept exper-
iments. The aim was not to match the state-of-the-art, but
rather to investigate whether the LL-init allows training of
deeper networks than standard initializations.

We compared a CReLU architecture with an orthogonal
LL-init against an equivalent CReLU network, resnet, and a
standard feedforward ReLU network. The other networks
were initialized according to He et al. (2015). The archi-
tectures are thin with the number of filters per layer in the
ReLU networks ranging from 8 at the input layer to 64, see
section A4. Doubling with each spatial extent reduction.
The thinness of the architecture makes it particularly diffi-
cult for gradients to propagate at high depth. The reduction
is performed by convolutional layers with strides of 2, and
following the last reduction the representation is passed to
a fully connected layer with 10 neurons for classification.
The numbers of filters per layer of the CReLU models were
adjusted by a factor of 1/

√
2 to achieve parameter parity

with the ReLU models. The Resnet version of the model is
the same as the basic ReLU model with skip-connections
after every two modules following He et al. (2016a).

Updates were performed with Adam (Kingma & Ba, 2015).

Training schedules were automatically determined by an
auto-scheduler that measures how quickly the loss on the
training set has been decreasing over the last ten epochs,
and drops the learning rate if a threshold remains crossed
for five measurements in a row. Standard data augmenta-
tion was performed; translating up to 4 pixels in any direc-
tion and flipping horizontally with p = 0.5.

Results are shown in figure 6, each point being the mean
performance of 10 trained models. The ReLU and CReLU
nets performed steadily worse with depth; the ReLU net
performing worse than the linear baseline of 40% at the
maximum depth of 198. The feedforward net with LL-init
performs comparably to a resnet, suggesting that shattered
gradients are a large part of the problem in training very
deep architectures.

6. Conclusion
The representational power of rectifier networks depends
on the number of linear regions into which it splits the in-
put space. It was shown in Montufar et al. (2014) that the
number of linear regions can grow exponentially with depth
(but only polynomially with width). Hence deep neural
networks are capable of far richer mappings than shallow
ones (Telgarsky, 2016). An underappreciated consequence
of the exponential growth in linear regions is the prolifera-
tion of discontinuities in the gradients of rectifier nets.

This paper has identified and analyzed a previously un-
noticed problem with gradients in deep networks: in a
randomly initialized network, the gradients of deeper lay-
ers are increasingly uncorrelated. Shattered gradients play
havoc with the optimization methods currently in use2 and
may explain the difficulty in training deep feedforward
networks even when effective initialization and batch nor-
malization are employed. Averaging gradients over mini-
batches becomes analogous to integrating over white noise
– there is no clear trend that can be summarized in a single
average direction. Shattered gradients can also introduce
numerical instabilities, since small differences in the input
can lead to large differences in gradients.

Skip-connections in combination with suitable rescaling
reduce shattering. Specifically, we show that the rate at
which correlations between gradients decays changes from
exponential for feedforward architectures to sublinear for
resnets. The analysis uncovers a surprising and (to us at
least) unexpected side-effect of batch normalization. An
alternate solution to the shattering gradient problem is to
design initializations that do not shatter such as the LL-
init. An interesting future direction is to investigate hybrid
architectures combining the LL-init with skip connections.

2Note that even the choice of a step size in SGD typically re-
flects an assumption about the correlation scale of the gradients.

(Balduzzi et al., 2017)
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We can summarize the techniques which have enabled the training of very deep
architectures:

• rectifiers to prevent the gradient from vanishing during the backward pass,

• dropout to force a distributed representation,

• batch normalization to dynamically maintain the statistics of activations,

• identity pass-through to keep a structured gradient and distribute
representation,

• smart initialization to put the gradient in a good regime.
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The end
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