Deep learning

3.6. Back-propagation

François Fleuret

https://fleuret.org/dlc/

Nov 24, 2020
We want to train an MLP by minimizing a loss over the training set

\[\mathcal{L}(w, b) = \sum_n \ell(f(x_n; w, b), y_n). \]
We want to train an MLP by minimizing a loss over the training set

$$\mathcal{L}(w, b) = \sum_n \ell(f(x_n; w, b), y_n).$$

To use gradient descent, we need the expression of the gradient of the per-sample loss $$\ell_n = \ell(f(x_n; w, b), y_n)$$ with respect to the parameters, e.g.

$$\frac{\partial \ell_n}{\partial w_{i,j}^{(l)}} \quad \text{and} \quad \frac{\partial \ell_n}{\partial b_{i}^{(l)}}.$$
For clarity, we consider a single training sample \(x \), and introduce \(s^{(1)}, \ldots, s^{(L)} \) as the summations before activation functions.

\[
x^{(0)} = x \xrightarrow{w^{(1)}, b^{(1)}} s^{(1)} \xrightarrow{\sigma} x^{(1)} \xrightarrow{w^{(2)}, b^{(2)}} s^{(2)} \xrightarrow{\sigma} \ldots \xrightarrow{w^{(L)}, b^{(L)}} s^{(L)} \xrightarrow{\sigma} x^{(L)} = f(x; w, b).
\]
For clarity, we consider a single training sample x, and introduce $s^{(1)}, \ldots, s^{(L)}$ as the summations before activation functions.

$$x^{(0)} = x \xrightarrow{w^{(1)}, b^{(1)}} s^{(1)} \xrightarrow{\sigma} x^{(1)} \xrightarrow{w^{(2)}, b^{(2)}} s^{(2)} \xrightarrow{\sigma} \ldots \xrightarrow{w^{(L)}, b^{(L)}} s^{(L)} \xrightarrow{\sigma} x^{(L)} = f(x; w, b).$$

Formally we set $x^{(0)} = x$, $
\forall l = 1, \ldots, L,$
$$\begin{aligned}
 s^{(l)} &= w^{(l)} x^{(l-1)} + b^{(l)} \\
 x^{(l)} &= \sigma(s^{(l)}),
\end{aligned}$$

and we set the output of the network as $f(x; w, b) = x^{(L)}$.

This is the forward pass.
For clarity, we consider a single training sample \(x \), and introduce \(s^{(1)}, \ldots, s^{(L)} \) as the summations before activation functions.

\[
x^{(0)} = x \xrightarrow{w^{(1)}, b^{(1)}} s^{(1)} \xrightarrow{\sigma} x^{(1)} \xrightarrow{w^{(2)}, b^{(2)}} s^{(2)} \xrightarrow{\sigma} \ldots \xrightarrow{w^{(L)}, b^{(L)}} s^{(L)} \xrightarrow{\sigma} x^{(L)} = f(x; w, b).
\]

Formally we set \(x^{(0)} = x \),

\[
\forall l = 1, \ldots, L, \quad \begin{cases}
 s^{(l)} = w^{(l)} x^{(l-1)} + b^{(l)} \\
 x^{(l)} = \sigma(s^{(l)})
\end{cases}
\]

and we set the output of the network as \(f(x; w, b) = x^{(L)} \).

This is the **forward pass**.
The core principle of the back-propagation algorithm is the “chain rule” from differential calculus:

\[(g \circ f)' = (g' \circ f)f'.\]

The linear approximation of a composition of mappings is the product of their individual linear approximations.
The core principle of the back-propagation algorithm is the “chain rule” from differential calculus:

\[(g \circ f)' = (g' \circ f)f'.\]

The linear approximation of a composition of mappings is the product of their individual linear approximations.

This generalizes to longer compositions and higher dimensions

\[J_{f_N \circ f_{N-1} \circ \cdots \circ f_1}(x) = J_{f_N}(f_{N-1}(\cdots (x))) \cdots J_{f_3}(f_2(f_1(x))) J_{f_2}(f_1(x)) J_{f_1}(x)\]

where \(J_f(x)\) is the Jacobian of \(f\) at \(x\), that is the matrix of the linear approximation of \(f\) in the neighborhood of \(x\).
\[x^{(l-1)} \xrightarrow{w^{(l)}, b^{(l)}} s^{(l)} \xrightarrow{\sigma} x^{(l)} \]
\(x^{(l-1)} \xrightarrow{w^{(l)}, b^{(l)}} s^{(l)} \xrightarrow{\sigma} x^{(l)} \)

Since \(s_i^{(l)} \) influences \(\ell \) only through \(x_i^{(l)} \) with

\[
x_i^{(l)} = \sigma(s_i^{(l)}),
\]
Since $s_i^{(l)}$ influences ℓ only through $x_i^{(l)}$ with

$$x_i^{(l)} = \sigma(s_i^{(l)})$$

we have

$$\frac{\partial \ell}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \frac{\partial x_i^{(l)}}{\partial s_i^{(l)}}$$
\[\mathbf{x}^{(l-1)} \xrightarrow{w^{(l)}, b^{(l)}} \mathbf{s}^{(l)} \xrightarrow{\sigma} \mathbf{x}^{(l)} \]

Since \(s_i^{(l)} \) influences \(\ell \) only through \(x_i^{(l)} \) with
\[x_i^{(l)} = \sigma(s_i^{(l)}) , \]
we have
\[\frac{\partial \ell}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \frac{\partial x_i^{(l)}}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \sigma'(s_i^{(l)}) , \]
Since $s_i^{(l)}$ influences ℓ only through $x_i^{(l)}$ with

$$x_i^{(l)} = \sigma(s_i^{(l)})$$

we have

$$\frac{\partial \ell}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \frac{\partial x_i^{(l)}}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \sigma'(s_i^{(l)})$$

And since $x_j^{(l-1)}$ influences ℓ only through the $s_i^{(l)}$ with

$$s_i^{(l)} = \sum_j w_{i,j} x_j^{(l-1)} + b_i^{(l)}$$
Since \(s_i^{(l)} \) influences \(\ell \) only through \(x_i^{(l)} \) with

\[
x_i^{(l)} = \sigma(s_i^{(l)}),
\]

we have

\[
\frac{\partial \ell}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \frac{\partial x_i^{(l)}}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \sigma'(s_i^{(l)}),
\]

And since \(x_j^{(l-1)} \) influences \(\ell \) only through the \(s_i^{(l)} \) with

\[
s_i^{(l)} = \sum_j w_{i,j} x_j^{(l-1)} + b_i^{(l)},
\]

we have

\[
\frac{\partial \ell}{\partial x_j^{(l-1)}} = \sum_j \frac{\partial \ell}{\partial s_i^{(l)}} \frac{\partial s_i^{(l)}}{\partial x_j^{(l-1)}}.
\]
Since $s_i^{(l)}$ influences ℓ only through $x_i^{(l)}$ with

$$x_i^{(l)} = \sigma(s_i^{(l)}),$$

we have

$$\frac{\partial \ell}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \frac{\partial x_i^{(l)}}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \sigma'(s_i^{(l)}),$$

And since $x_j^{(l-1)}$ influences ℓ only through the $s_i^{(l)}$ with

$$s_i^{(l)} = \sum_j w_{i,j} x_j^{(l-1)} + b_i^{(l)},$$

we have

$$\frac{\partial \ell}{\partial x_j^{(l-1)}} = \sum_i \frac{\partial \ell}{\partial s_i^{(l)}} \frac{\partial s_i^{(l)}}{\partial x_j^{(l-1)}} = \sum_i \frac{\partial \ell}{\partial s_i^{(l)}} w_{i,j}.$$
\[
\chi^{(l-1)} \xrightarrow{w^{(l)}, b^{(l)}} \mathbf{s}^{(l)} \xrightarrow{\sigma} \chi^{(l)}
\]

Since \(s_i^{(l)} \) influences \(\ell \) only through \(x_i^{(l)} \) with

\[
x_i^{(l)} = \sigma(s_i^{(l)}),
\]

we have

\[
\frac{\partial \ell}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \frac{\partial x_i^{(l)}}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \sigma'(s_i^{(l)}),
\]

And since \(x_j^{(l-1)} \) influences \(\ell \) only through the \(s_i^{(l)} \) with

\[
s_i^{(l)} = \sum_j w_{i,j} x_j^{(l-1)} + b_i^{(l)},
\]

we have

\[
\frac{\partial \ell}{\partial x_j^{(l-1)}} = \sum_i \frac{\partial \ell}{\partial s_i^{(l)}} \frac{\partial s_i^{(l)}}{\partial x_j^{(l-1)}} = \sum_i \frac{\partial \ell}{\partial s_i^{(l)}} w_{i,j}.
\]
Since $w_{i,j}^{(l)}$ and $b_{i}^{(l)}$ influences ℓ only through $s_{i}^{(l)}$ with

$$s_{i}^{(l)} = \sum_{j} w_{i,j}^{(l)} x_{j}^{(l-1)} + b_{i}^{(l)},$$
\[x^{(l-1)} \xrightarrow{w^{(l)}, b^{(l)}} s^{(l)} \xrightarrow{\sigma} x^{(l)} \]

Since \(w_{i,j}^{(l)} \) and \(b_i^{(l)} \) influences \(\ell \) only through \(s_i^{(l)} \) with

\[
s_i^{(l)} = \sum_j w_{i,j}^{(l)} x_j^{(l-1)} + b_i^{(l)},
\]

we have

\[
\frac{\partial \ell}{\partial w_{i,j}^{(l)}} = \frac{\partial \ell}{\partial s_i^{(l)}} \frac{\partial s_i^{(l)}}{\partial w_{i,j}^{(l)}}
\]
$$x^{(l-1)} \xrightarrow{w^{(l)}, b^{(l)}} s^{(l)} \xrightarrow{\sigma} x^{(l)}$$

Since $w^{(l)}_{i,j}$ and $b^{(l)}_i$ influences ℓ only through $s^{(l)}_i$ with

$$s^{(l)}_i = \sum_j w^{(l)}_{i,j} x^{(l-1)}_j + b^{(l)}_i,$$

we have

$$\frac{\partial \ell}{\partial w^{(l)}_{i,j}} = \frac{\partial \ell}{\partial s^{(l)}_i} \frac{\partial s^{(l)}_i}{\partial w^{(l)}_{i,j}} = \frac{\partial \ell}{\partial s^{(l)}_i} x^{(l-1)}_j,$$
\[x^{(l-1)} \xrightarrow{w^{(l)}, b^{(l)}} s^{(l)} \xrightarrow{\sigma} x^{(l)} \]

Since \(w_{i,j}^{(l)} \) and \(b_{i}^{(l)} \) influences \(\ell \) only through \(s_{i}^{(l)} \) with

\[s_{i}^{(l)} = \sum_j w_{i,j}^{(l)} x_{j}^{(l-1)} + b_{i}^{(l)} , \]

we have

\[\frac{\partial \ell}{\partial w_{i,j}^{(l)}} = \frac{\partial \ell}{\partial s_{i}^{(l)}} \frac{\partial s_{i}^{(l)}}{\partial w_{i,j}^{(l)}} = \frac{\partial \ell}{\partial s_{i}^{(l)}} x_{j}^{(l-1)}, \]

\[\frac{\partial \ell}{\partial b_{i}^{(l)}} = \frac{\partial \ell}{\partial s_{i}^{(l)}} . \]
To summarize: we can compute $\frac{\partial \ell}{\partial x_i^{(L)}}$ from the definition of ℓ, and recursively **propagate backward** the derivatives of the loss w.r.t the activations with

$$\frac{\partial \ell}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \sigma'(s_i^{(l)})$$

and

$$\frac{\partial \ell}{\partial x_j^{(l-1)}} = \sum_i \frac{\partial \ell}{\partial s_i^{(l)}} w_{i,j}^{(l)}.$$
To summarize: we can compute $\frac{\partial \ell}{\partial x_i^{(L)}}$ from the definition of ℓ, and recursively **propagate backward** the derivatives of the loss w.r.t the activations with

$$
\frac{\partial \ell}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \sigma'(s_i^{(l)})
$$

and

$$
\frac{\partial \ell}{\partial x_j^{(l-1)}} = \sum_i \frac{\partial \ell}{\partial s_i^{(l)}} w_{i,j}^{(l)}.
$$

And then compute the derivatives w.r.t the parameters with

$$
\frac{\partial \ell}{\partial w_{i,j}^{(l)}} = \frac{\partial \ell}{\partial s_i^{(l)}} x_j^{(l-1)},
$$

and

$$
\frac{\partial \ell}{\partial b_i^{(l)}} = \frac{\partial \ell}{\partial s_i^{(l)}}.
$$
To write in tensorial form we will use a notation for the Jacobian to make explicit the variable wrt which the derivatives are computed. For $\psi : \mathbb{R}^N \rightarrow \mathbb{R}^M$,

$$
\left[\frac{\partial \psi}{\partial x} \right] = \begin{pmatrix}
\frac{\partial \psi_1}{\partial x_1} & \cdots & \frac{\partial \psi_1}{\partial x_N} \\
\vdots & \ddots & \vdots \\
\frac{\partial \psi_M}{\partial x_1} & \cdots & \frac{\partial \psi_M}{\partial x_N}
\end{pmatrix},
$$

and if $\psi : \mathbb{R}^{N \times M} \rightarrow \mathbb{R}$, we will use the notation

$$
\left[\frac{\partial \psi}{\partial w} \right] = \begin{pmatrix}
\frac{\partial \psi}{\partial w_{1,1}} & \cdots & \frac{\partial \psi}{\partial w_{1,M}} \\
\vdots & \ddots & \vdots \\
\frac{\partial \psi}{\partial w_{N,1}} & \cdots & \frac{\partial \psi}{\partial w_{N,M}}
\end{pmatrix}.
$$
\[w(l) \quad \left[\frac{\partial \ell}{\partial w(l)} \right] \quad b(l) \quad \left[\frac{\partial \ell}{\partial b(l)} \right] \]

\[x^{(l-1)} \quad \times \quad + \quad s(l) \quad \sigma \quad x^{(l)} \]
\[
\begin{align*}
\sigma \left(x_{l-1} \cdot w_{l} + b_{l} \right)
\end{align*}
\]
\[
\frac{\partial \ell}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \sigma' \left(s_i^{(l)} \right)
\]
\[
\frac{\partial \ell}{\partial x_j^{(l-1)}} = \sum_i w_{i,j}^{(l)} \frac{\partial \ell}{\partial s_i^{(l)}}
\]
\[
\frac{\partial \ell}{\partial b_i^{(l)}} = \frac{\partial \ell}{\partial s_i^{(l)}}
\]
\[
\frac{\partial \ell}{\partial w_{i,j}}(l) = \frac{\partial \ell}{\partial s_i(l)} x_{j(l-1)}
\]
\[w^{(l)} \]

\[\left[\frac{\partial \ell}{\partial w^{(l)}} \right] \]

\[b^{(l)} \]

\[\left[\frac{\partial \ell}{\partial b^{(l)}} \right] \]

\[x^{(l-1)} \]

\[x \cdot T \]

\[+ \]

\[s^{(l)} \]

\[\sigma \]

\[x^{(l)} \]

\[\left[\frac{\partial \ell}{\partial x^{(l-1)}} \right] \]

\[\cdot T \times \]

\[\left[\frac{\partial \ell}{\partial s^{(l)}} \right] \]

\[\odot \]

\[\left[\frac{\partial \ell}{\partial x^{(l)}} \right] \]

Francois Fleuret

Forward pass

Compute the activations.

\[
x^{(0)} = x, \quad \forall l = 1, \ldots, L, \quad \left\{
\begin{array}{l}
s^{(l)} = w^{(l)}x^{(l-1)} + b^{(l)} \\
x^{(l)} = \sigma(s^{(l)})
\end{array}
\right.
\]
Forward pass

Compute the activations.

\[
x^{(0)} = x, \quad \forall l = 1, \ldots, L, \quad \begin{cases}
 s^{(l)} = w^{(l)} x^{(l-1)} + b^{(l)} \\
 x^{(l)} = \sigma(s^{(l)})
\end{cases}
\]

Backward pass

Compute the derivatives of the loss wrt the activations.

\[
\begin{cases}
 \frac{\partial \ell}{\partial x^{(l)}} & \text{from the definition of } \ell \\
 \text{if } l < L, \quad \frac{\partial \ell}{\partial x^{(l)}} = (w^{(l+1)})^\top \left[\frac{\partial \ell}{\partial s^{(l+1)}} \right]
\end{cases}
\]

Compute the derivatives of the loss wrt the parameters.

\[
\begin{align*}
 \frac{\partial \ell}{\partial w^{(l)}} &= \left[\frac{\partial \ell}{\partial s^{(l)}} \right] (x^{(l-1)})^\top \\
 \frac{\partial \ell}{\partial b^{(l)}} &= \left[\frac{\partial \ell}{\partial s^{(l)}} \right]
\end{align*}
\]
Forward pass

Compute the activations.

\[
x^{(0)} = x, \quad \forall l = 1, \ldots, L,
\]

\[
\begin{align*}
 s^{(l)} &= w^{(l)} x^{(l-1)} + b^{(l)} \\
 x^{(l)} &= \sigma(s^{(l)})
\end{align*}
\]

Backward pass

Compute the derivatives of the loss wrt the activations.

\[
\begin{align*}
 \frac{\partial \ell}{\partial x^{(L)}} & \quad \text{from the definition of } \ell \\
 \text{if } l < L, \quad \frac{\partial \ell}{\partial x^{(l)}} &= (w^{(l+1)})^\top \left[\frac{\partial \ell}{\partial s^{(l+1)}} \right]
\end{align*}
\]

Compute the derivatives of the loss wrt the parameters.

\[
\begin{align*}
 \frac{\partial \ell}{\partial w^{(l)}} &= \left[\frac{\partial \ell}{\partial s^{(l)}} \right] (x^{(l-1)})^\top \\
 \frac{\partial \ell}{\partial b^{(l)}} &= \left[\frac{\partial \ell}{\partial s^{(l)}} \right]
\end{align*}
\]

Gradient step

Update the parameters.

\[
\begin{align*}
 w^{(l)} & \leftarrow w^{(l)} - \eta \left[\frac{\partial \ell}{\partial w^{(l)}} \right] \\
 b^{(l)} & \leftarrow b^{(l)} - \eta \left[\frac{\partial \ell}{\partial b^{(l)}} \right]
\end{align*}
\]
In spite of its hairy formalization, the backward pass is a simple algorithm: apply the chain rule again and again.

As for the forward pass, it can be expressed in tensorial form. Heavy computation is concentrated in linear operations, and all the non-linearities go into component-wise operations.
Regarding computation, since the costly operation for the forward pass is
\[s^{(l)} = w^{(l)} x^{(l-1)} + b^{(l)} \]
and for the backward
\[\left[\frac{\partial \ell}{\partial x^{(l)}} \right] = \left(w^{(l+1)} \right)^\top \left[\frac{\partial \ell}{\partial s^{(l+1)}} \right] \]
and
\[\left[\frac{\partial \ell}{\partial w^{(l)}} \right] = \left[\frac{\partial \ell}{\partial s^{(l)}} \right] \left(x^{(l-1)} \right)^\top, \]
the rule of thumb is that the backward pass is twice more expensive than the forward one.