Deep learning

12.2. LSTM and GRU

François Fleuret

https://fleuret.org/dlc/

Nov 29, 2020
The Long-Short Term Memory unit (LSTM) by Hochreiter and Schmidhuber (1997), is a recurrent network that originally had a gating of the form

\[c_t = c_{t-1} + i_t \odot g_t \]

where \(c_t \) is a recurrent state, \(i_t \) is a gating function and \(g_t \) is a full update. This assures that the derivatives of the loss wrt \(c_t \) does not vanish.
It is noteworthy that this model implemented 20 years before the resnets of He et al. (2015) uses the exact same strategy to deal with depth.
It is noteworthy that this model implemented 20 years before the resnets of He et al. (2015) uses the exact same strategy to deal with depth.

This original architecture was improved with a forget gate (Gers et al., 2000), resulting in the standard LSTM used today.

In what follows we consider notation and variant from Jozefowicz et al. (2015).
The recurrent state is composed of a “cell state” c_t and an “output state” h_t. Gate f_t modulates if the cell state should be forgotten, i_t if the new update should be taken into account, and o_t if the output state should be reset.
The recurrent state is composed of a “cell state” c_t and an “output state” h_t. Gate f_t modulates if the cell state should be forgotten, i_t if the new update should be taken into account, and o_t if the output state should be reset.

\[
\begin{align*}
 f_t &= \text{sigm} \left(W_{(x \ f)} x_t + W_{(h \ f)} h_{t-1} + b(f) \right) & \text{(forget gate)} \\
 i_t &= \text{sigm} \left(W_{(x \ i)} x_t + W_{(h \ i)} h_{t-1} + b(i) \right) & \text{(input gate)} \\
 g_t &= \tanh \left(W_{(x \ c)} x_t + W_{(h \ c)} h_{t-1} + b(c) \right) & \text{(full cell state update)} \\
 c_t &= f_t \odot c_{t-1} + i_t \odot g_t & \text{(cell state)} \\
 o_t &= \text{sigm} \left(W_{(x \ o)} x_t + W_{(h \ o)} h_{t-1} + b(o) \right) & \text{(output gate)} \\
 h_t &= o_t \odot \tanh(c_t) & \text{(output state)}
\end{align*}
\]
The recurrent state is composed of a “cell state” c_t and an “output state” h_t. Gate f_t modulates if the cell state should be forgotten, i_t if the new update should be taken into account, and o_t if the output state should be reset.

\[
\begin{align*}
 f_t &= \text{sigm} \left(W_{(x\ f)} x_t + W_{(h\ f)} h_{t-1} + b(f) \right) \quad \text{(forget gate)} \\
 i_t &= \text{sigm} \left(W_{(x\ i)} x_t + W_{(h\ i)} h_{t-1} + b(i) \right) \quad \text{(input gate)} \\
 g_t &= \text{tanh} \left(W_{(x\ c)} x_t + W_{(h\ c)} h_{t-1} + b(c) \right) \quad \text{(full cell state update)} \\
 c_t &= f_t \odot c_{t-1} + i_t \odot g_t \quad \text{(cell state)} \\
 o_t &= \text{sigm} \left(W_{(x\ o)} x_t + W_{(h\ o)} h_{t-1} + b(o) \right) \quad \text{(output gate)} \\
 h_t &= o_t \odot \text{tanh}(c_t) \quad \text{(output state)}
\end{align*}
\]

As pointed out by Gers et al. (2000), the forget bias $b(f)$ should be initialized with large values so that initially $f_t \approx 1$ and the gating has no effect.
The recurrent state is composed of a “cell state” c_t and an “output state” h_t. Gate f_t modulates if the cell state should be forgotten, i_t if the new update should be taken into account, and o_t if the output state should be reset.

$$f_t = \text{sigm} \left(W_{(x,f)} x_t + W_{(h,f)} h_{t-1} + b(f) \right)$$ \text{(forget gate)}

$$i_t = \text{sigm} \left(W_{(x,i)} x_t + W_{(h,i)} h_{t-1} + b(i) \right)$$ \text{(input gate)}

$$g_t = \tanh \left(W_{(x,c)} x_t + W_{(h,c)} h_{t-1} + b(c) \right)$$ \text{(full cell state update)}

$$c_t = f_t \odot c_{t-1} + i_t \odot g_t$$ \text{(cell state)}

$$o_t = \text{sigm} \left(W_{(x,o)} x_t + W_{(h,o)} h_{t-1} + b(o) \right)$$ \text{(output gate)}

$$h_t = o_t \odot \tanh(c_t)$$ \text{(output state)}

As pointed out by Gers et al. (2000), the forget bias $b(f)$ should be initialized with large values so that initially $f_t \approx 1$ and the gating has no effect.

This model was extended by Gers et al. (2003) with “peephole connections” that allow gates to depend on c_{t-1}.
Prediction is done from the h^t state, hence called the output state.
Prediction is done from the h_t state, hence called the output state.
Several such “cells” can be combined to create a multi-layer LSTM.
Several such “cells” can be combined to create a multi-layer LSTM.
Several such “cells” can be combined to create a multi-layer LSTM.

\[\begin{align*}
 h_1^{t-1} & \quad c_1^{t-1} \\
 \vdots & \quad \vdots \\
 h_2^{t-1} & \quad c_2^{t-1} \\
 \vdots & \quad \vdots \\
 h_t^{t-1} & \quad c_t^{t-1} \\
 x_t & \quad \psi \\
 \psi & \quad \psi \\
 y_t & \quad y_{t-1}
\end{align*}\]
PyTorch’s `torch.nn.LSTM` implements this model.

Its processes several sequences, and returns two tensors, with D the number of layers and T the sequence length:

- the outputs for all the layers at the last time step: h^1_T and h^D_T, and
- the outputs of the last layer at each time step: h^D_1, \ldots, h^D_T.

The initial recurrent states h^1_0, \ldots, h^D_0 and c^1_0, \ldots, c^D_0 can also be specified.
PyTorch’s RNNs can process batches of sequences of same length, that can be encoded in a regular tensor, or batches of sequences of various lengths using the type `nn.utils.rnn.PackedSequence`.

Such an object can be created with `nn.utils.rnn.pack_padded_sequence`, which expects as argument a first tensor of $x_{n,t} N \times T \times \ldots$ padded with zeros, and a second tensor of T_ns.

```python
>>> from torch.nn.utils.rnn import pack_padded_sequence
>>> pack_padded_sequence(torch.tensor([[1.], [2.], [3.], [4.], [5.]]), [3, 2])
PackedSequence(data=tensor([[1.],
                         [2.],
                         [3.],
                         [4.],
                         [5.]]), batch_sizes=tensor([ 2, 2, 1]))
```
PyTorch’s RNNs can process batches of sequences of same length, that can be encoded in a regular tensor, or batches of sequences of various lengths using the type `nn.utils.rnn.PackedSequence`.

Such an object can be created with `nn.utils.rnn.pack_padded_sequence`, which expects as argument a first tensor of $x_{n,t} \in N \times T \times \ldots$ padded with zeros, and a second tensor of T_ns.

```python
>>> from torch.nn.utils.rnn import pack_padded_sequence
>>> pack_padded_sequence(torch.tensor([[1.], [2.]],
... [[3.], [4.]],
... [[5.], [0.]]),
... [3, 2])
PackedSequence(data=tensor([[ 1.],
    [ 2.],
    [ 3.],
    [ 4.],
    [ 5.]]), batch_sizes=tensor([ 2, 2, 1]))
```
PyTorch’s RNNs can process batches of sequences of same length, that can be encoded in a regular tensor, or batches of sequences of various lengths using the type `nn.utils.rnn.PackedSequence`.

Such an object can be created with `nn.utils.rnn.pack_padded_sequence`, which expects as argument a first tensor of $x_{n,t} \times N \times T \times \ldots$ padded with zeros, and a second tensor of T ns.

```python
>>> from torch.nn.utils.rnn import pack_padded_sequence
>>> pack_padded_sequence(torch.tensor([[ 1. ], [ 2. ]],
... [[ 3. ], [ 4. ]],
... [[ 5. ], [ 0. ]])),
... [3, 2])
PackedSequence(data=tensor([[ 1.],
  [ 2.],
  [ 3.],
  [ 4.],
  [ 5.]]), batch_sizes=tensor([ 2, 2, 1]))
```

⚠️ The sequences must be sorted by decreasing lengths.
PyTorch’s RNNs can process batches of sequences of same length, that can be encoded in a regular tensor, or batches of sequences of various lengths using the type `nn.utils.rnn.PackedSequence`.

Such an object can be created with `nn.utils.rnn.pack_padded_sequence`, which expects as argument a first tensor of x_n,t $N \times T \times \ldots$ padded with zeros, and a second tensor of T_ns.

```python
>>> from torch.nn.utils.rnn import pack_padded_sequence
>>> pack_padded_sequence(torch.tensor([[ 1. ], [ 2. ]],
... [[ 3. ], [ 4. ]],
... [[ 5. ], [ 0. ]]]),
... [3, 2])
PackedSequence(data=tensor([[ 1.],
    [ 2.],
    [ 3.],
    [ 4.],
    [ 5.]]), batch_sizes=tensor([ 2, 2, 1]))
```

⚠️ The sequences must be sorted by decreasing lengths.

`nn.utils.rnn.pad_packed_sequence` converts back to a padded tensor.
The input to LSTM.forward is of the form \(T \times N \times \ldots \).
The graph shows the error as a function of the number of sequences seen. It compares three different methods: std, gating, and lstm. The std method has the highest initial error but shows a rapid decrease, while the gating method has a more moderate decrease and the lstm method has the lowest error throughout the sequence count.
François Fleuret

Deep learning / 12.2. LSTM and GRU
The LSTM were simplified into the Gated Recurrent Unit (GRU) by Cho et al. (2014), with a gating for the recurrent state, and a reset gate.

\[
\begin{align*}
 r_t &= \text{sigm} \left(W_{(x \ r)} x_t + W_{(h \ r)} h_{t-1} + b_{(r)} \right) \quad \text{(reset gate)} \\
 z_t &= \text{sigm} \left(W_{(x \ z)} x_t + W_{(h \ z)} h_{t-1} + b_{(z)} \right) \quad \text{(forget gate)} \\
 \tilde{h}_t &= \text{tanh} \left(W_{(x \ h)} x_t + W_{(h \ h)} (r_t \circ h_{t-1}) + b_{(h)} \right) \quad \text{(full update)} \\
 h_t &= z_t \circ h_{t-1} + (1 - z_t) \circ \tilde{h}_t \quad \text{(hidden update)}
\end{align*}
\]
class GRUNet(nn.Module):
 def __init__(self, dim_input, dim_recurrent, num_layers, dim_output):
 super().__init__()
 self.gru = nn.GRU(input_size = dim_input, hidden_size = dim_recurrent, num_layers = num_layers)
 self.fc_y = nn.Linear(dim_recurrent, dim_output)

 def forward(self, input):
 # Make this a batch of size 1
 input = input.unsqueeze(1)
 # Get the activations of all layers at the last time step
 _, output = self.gru(input)
 # Drop the batch index
 output = output.squeeze(1)
 output = output[output.size(0) - 1:output.size(0)]
 return self.fc_y(F.relu(output))
Francois Fleuret
Deep learning / 12.2. LSTM and GRU
The specific form of these units prevents the gradient from vanishing, but it may still be excessively large on certain mini-batch.

The standard strategy to solve this issue is gradient norm clipping (Pascanu et al., 2013), which consists of re-scaling the [norm of the] gradient to a fixed threshold δ when it is above:

$$
\nabla f' = \frac{\nabla f}{\|\nabla f\|} \min (\|\nabla f\|, \delta).
$$
The function `torch.nn.utils.clip_grad_norm` applies this operation to the gradient of a model, as defined by an iterator through its parameters:

```python
>>> x = torch.empty(10)
>>> x.grad = x.new(x.size()).normal_()
>>> y = torch.empty(5)
>>> y.grad = y.new(y.size()).normal_()
>>> torch.cat((x.grad, y.grad)).norm()
tensor(4.0303)
>>> torch.nn.utils.clip_grad_norm_((x, y), 5.0)
tensor(4.0303)
>>> torch.cat((x.grad, y.grad)).norm()
tensor(4.0303)
>>> torch.nn.utils.clip_grad_norm_((x, y), 1.25)
tensor(4.0303)
>>> torch.cat((x.grad, y.grad)).norm()
tensor(1.2500)
```
Jozefowicz et al. (2015) conducted an extensive exploration of different recurrent architectures through meta-optimization, and even though some units simpler than LSTM or GRU perform well, they wrote:

“We have evaluated a variety of recurrent neural network architectures in order to find an architecture that reliably out-performs the LSTM. Though there were architectures that outperformed the LSTM on some problems, we were unable to find an architecture that consistently beat the LSTM and the GRU in all experimental conditions.”

(Jozefowicz et al., 2015)
The end
References

