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Arjovsky et al. (2017) pointed out that DJS does not account [much] for the
metric structure of the space.
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Hence all |x | greater than δ are seen the same.
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An alternative choice is the “earth moving distance”, or Wasserstein distance,
which intuitively is the minimum mass displacement to transform one
distribution into the other.
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Intuitively, it increases monotonically with the distance between modes

δ

x

1
2

1
2δ

1

µ′

µ

W(µ, µ′) =
1

2
|x |

François Fleuret Deep learning / 11.2. Wasserstein GAN 3 / 20



The Wasserstein distance can be defined as

W(µ, µ′) = min
q∈Π(µ,µ′)

E(X ,X ′)∼q

[
‖X − X ′‖

]
,

where Π(µ, µ′) is the set of distributions over X 2 whose marginals are µ and µ′.

So while it would make a lot of sense to look for a generator matching the
density for this metric, that is

G∗ = argmin
G

W(µ, µG).

the definition of W is not an operational way of estimating it.
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A duality theorem from Kantorovich and Rubinstein implies

W(µ, µ′) = max
‖f ‖L≤1

EX∼µ

[
f (X )

]
− EX∼µ′

[
f (X )

]
where

‖f ‖L = max
x,x′

‖f (x)− f (x ′)‖
‖x − x ′‖

is the Lipschitz seminorm.
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Using this result, we are looking for a generator

G∗ = argmin
G

W(µ, µG)

= argmin
G

max
‖D‖L≤1

(
EX∼µ

[
D(X )

]
− EX∼µG

[
D(X )

])
,

where the max is now an optimized predictor.

This is very similar to the original GAN formulation, except that the value of D
is not interpreted through a log-loss, and there is a strong regularization on D.
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The main issue in this formulation is to optimize the network D under a
constraint on its Lipschitz seminorm

‖D‖L ≤ 1.

Arjovsky et al. achieve this by clipping D’s weights.
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The two main benefits observed by Arjovsky et al. are

• A greater stability of the learning process, both in principle and in their
experiments: they do not witness “mode collapse”.

• A greater interpretability of the loss, which is a better indicator of the
quality of the samples.
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Figure 2: Optimal discriminator and critic when learning to differentiate two Gaussians.
As we can see, the traditional GAN discriminator saturates and results in vanishing gra-
dients. Our WGAN critic provides very clean gradients on all parts of the space.

4 Empirical Results

We run experiments on image generation using our Wasserstein-GAN algorithm and
show that there are significant practical benefits to using it over the formulation
used in standard GANs.

We claim two main benefits:

• a meaningful loss metric that correlates with the generator’s convergence and
sample quality

• improved stability of the optimization process

4.1 Experimental Procedure

We run experiments on image generation. The target distribution to learn is the
LSUN-Bedrooms dataset [24] – a collection of natural images of indoor bedrooms.
Our baseline comparison is DCGAN [18], a GAN with a convolutional architecture
trained with the standard GAN procedure using the − logD trick [4]. The generated
samples are 3-channel images of 64x64 pixels in size. We use the hyper-parameters
specified in Algorithm 1 for all of our experiments.

9

(Arjovsky et al., 2017)
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Figure 4: JS estimates for an MLP generator (upper left) and a DCGAN generator (upper
right) trained with the standard GAN procedure. Both had a DCGAN discriminator. Both
curves have increasing error. Samples get better for the DCGAN but the JS estimate
increases or stays constant, pointing towards no significant correlation between sample
quality and loss. Bottom: MLP with both generator and discriminator. The curve goes up
and down regardless of sample quality. All training curves were passed through the same
median filter as in Figure 3.

to stare at the generated samples to figure out failure modes and to gain information
on which models are doing better over others.

However, we do not claim that this is a new method to quantitatively evaluate
generative models yet. The constant scaling factor that depends on the critic’s
architecture means it’s hard to compare models with different critics. Even more,
in practice the fact that the critic doesn’t have infinite capacity makes it hard to
know just how close to the EM distance our estimate really is. This being said,
we have succesfully used the loss metric to validate our experiments repeatedly and
without failure, and we see this as a huge improvement in training GANs which
previously had no such facility.

In contrast, Figure 4 plots the evolution of the GAN estimate of the JS distance
during GAN training. More precisely, during GAN training, the discriminator is
trained to maximize

L(D, gθ) = Ex∼Pr [logD(x)] + Ex∼Pθ [log(1−D(x))]

which is is a lower bound of 2JS(Pr,Pθ)−2 log 2. In the figure, we plot the quantity
1
2L(D, gθ) + log 2, which is a lower bound of the JS distance.

This quantity clearly correlates poorly the sample quality. Note also that the

11

(Arjovsky et al., 2017)
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Figure 3: Training curves and samples at different stages of training. We can see a clear
correlation between lower error and better sample quality. Upper left: the generator is an
MLP with 4 hidden layers and 512 units at each layer. The loss decreases constistently as
training progresses and sample quality increases. Upper right: the generator is a standard
DCGAN. The loss decreases quickly and sample quality increases as well. In both upper
plots the critic is a DCGAN without the sigmoid so losses can be subjected to comparison.
Lower half: both the generator and the discriminator are MLPs with substantially high
learning rates (so training failed). Loss is constant and samples are constant as well. The
training curves were passed through a median filter for visualization purposes.

4.2 Meaningful loss metric

Because the WGAN algorithm attempts to train the critic f (lines 2–8 in Algo-
rithm 1) relatively well before each generator update (line 10 in Algorithm 1), the
loss function at this point is an estimate of the EM distance, up to constant factors
related to the way we constrain the Lipschitz constant of f .

Our first experiment illustrates how this estimate correlates well with the quality
of the generated samples. Besides the convolutional DCGAN architecture, we also
ran experiments where we replace the generator or both the generator and the critic
by 4-layer ReLU-MLP with 512 hidden units.

Figure 3 plots the evolution of the WGAN estimate (3) of the EM distance
during WGAN training for all three architectures. The plots clearly show that
these curves correlate well with the visual quality of the generated samples.

To our knowledge, this is the first time in GAN literature that such a property is
shown, where the loss of the GAN shows properties of convergence. This property is
extremely useful when doing research in adversarial networks as one does not need

10

(Arjovsky et al., 2017)
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However, as Arjovsky et al. wrote:

“Weight clipping is a clearly terrible way to enforce a Lipschitz constraint. If
the clipping parameter is large, then it can take a long time for any weights
to reach their limit, thereby making it harder to train the critic till optimality.
If the clipping is small, this can easily lead to vanishing gradients when
the number of layers is big, or batch normalization is not used (such as in
RNNs).”

(Arjovsky et al., 2017)

In some way, the resulting Wasserstein GAN (WGAN) trades the difficulty to
train G for the difficulty to train D.

In practice, this weakness results in extremely long convergence time.
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Spectral Normalization
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Miyato et al. (2018) proposed to control the Lipschitz constant of D by
rescaling its weights, so that all the linear layers have their singular values lesser
than 1, and consequently Lipschitz constant, lesser than 1.

If the non-linear layers are also Lipschitz of constant lesser than 1 (e.g. ReLU),
this is a sufficient condition.

Spectral Normalization is a layer normalization that estimates the largest
singular value of a weight matrix, and rescale it accordingly.

While computing the SVD of a matrix is expensive, computing [a good
approximation of] the largest SV can be done iteratively for a reasonable cost.
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The largest singular value of a matrix W is also its spectral norm

σ(W ) = max
h:‖h‖2≤1

‖Wh‖2.

To calculate it, the power iteration method starts with two random vectors u0

and v0, and with

vn+1 =
W>un

‖W>un‖2

un+1 =
Wvn+1

‖Wvn+1‖2

we have
σ(W ) = lim

n→∞
u>n Wvn
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W = torch.empty(15, 15).normal_()
print(W.svd().S.max())

u = torch.empty(W.size(0)).normal_()

for k in range(10):
v = W.t() @ u
v = v / v.norm()
u = W @ v
u = u / u.norm()

print(u.t() @ W @ v)

prints

tensor(7.9129)
tensor(7.9129)
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Miyato et al. update un and vn before every gradient step, and rescale the
weight matrix accordingly.

The same can be done in PyTorch with torch.nn.utils.spectral_norm, that
wraps any linear layer into a module that performs the normalization.
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m = nn.Linear(5, 5)
print(m.weight.svd().S.max())

x = torch.rand(100, 5)
optimizer = torch.optim.SGD(m.parameters(), lr = 1e-1)

for k in range(100):
loss = -m(x).norm()
optimizer.zero_grad()
loss.backward()
optimizer.step()

print(m.weight.svd().S.max())

prints

tensor(0.9277, grad_fn=<MaxBackward1>)
tensor(114.1429, grad_fn=<MaxBackward1>)
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m = nn.Linear(5, 5)
print(m.weight.svd().S.max())

m = nn.utils.spectral_norm(m)

x = torch.rand(100, 5)
optimizer = torch.optim.SGD(m.parameters(), lr = 1e-1)

for k in range(100):
loss = -m(x).norm()
optimizer.zero_grad()
loss.backward()
optimizer.step()

print(m.weight.svd().S.max())

prints

tensor(0.8716, grad_fn=<MaxBackward1>)
tensor(1.0000, grad_fn=<MaxBackward1>)
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The end
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