Deep learning

11.2. Wasserstein GAN

Francois Fleuret
https://fleuret.org/dlc/
Dec 20, 2020

/% UNIVERSITE
/ DE GENEVE

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

EPFL

https://fleuret.org/dlc/

Arjovsky et al. (2017) pointed out that D s does not account [much] for the
metric structure of the space.

Francois Fleuret Deep learning / 11.2. Wasserstein GAN 1/20

Arjovsky et al. (2017) pointed out that D s does not account [much] for the

metric structure of the space.

)
<>
1
26 m
1)
—
N/
\ \
\ 1 \

Francois Fleuret Deep learning / 11.2. Wasserstein GAN

1/20

Arjovsky et al. (2017) pointed out that D s does not account [much] for the
metric structure of the space.

Nl
<>

Djs(p, ') = min(é, [x]) (% log <1 + 2—15> - (1 + %) log <1 + %))

Hence all |x| greater than § are seen the same.

Francois Fleuret Deep learning / 11.2. Wasserstein GAN 1/20

An alternative choice is the “earth moving distance”, or Wasserstein distance,
which intuitively is the minimum mass displacement to transform one
distribution into the other.

Francois Fleuret Deep learning / 11.2. Wasserstein GAN 2/20

An alternative choice is the “earth moving distance”, or Wasserstein distance,
which intuitively is the minimum mass displacement to transform one
distribution into the other.

Francois Fleuret Deep learning / 11.2. Wasserstein GAN 2/20

An alternative choice is the “earth moving distance”, or Wasserstein distance,
which intuitively is the minimum mass displacement to transform one
distribution into the other.

1 1 1
p= 21[1,2] + 11[3,4] + 51[9,101

Francois Fleuret Deep learning / 11.2. Wasserstein GAN

2/20

An alternative choice is the “earth moving distance”, or Wasserstein distance,
which intuitively is the minimum mass displacement to transform one
distribution into the other.

1 1 1 1
= 21[1,2] + 11[3,4] + 51[9,101 p = 51[5‘7]

Francois Fleuret Deep learning / 11.2. Wasserstein GAN

2/20

An alternative choice is the “earth moving distance”, or Wasserstein distance,
which intuitively is the minimum mass displacement to transform one
distribution into the other.

Francois Fleuret Deep learning / 11.2. Wasserstein GAN

2/20

An alternative choice is the “earth moving distance”, or Wasserstein distance,
which intuitively is the minimum mass displacement to transform one
distribution into the other.

1 1 1 1
p= 21[1,2] + 11[3,4] + 51[9,101 p o= 51[5,7]

W(’)*4><1+2><1+3><1*3
o) =22y 4 2~

Francois Fleuret Deep learning / 11.2. Wasserstein GAN 2/20

Intuitively, it increases monotonically with the distance between modes

)
<>
1
26 m
)
\%
w
| - |

Francois Fleuret Deep learning / 11.2. Wasserstein GAN

3/20

The Wasserstein distance can be defined as

W(p, 1) = in ~allIX = X1,
(1 p') = __min | Box xryq | 1]

where M(p, 11/ is the set of distributions over 2> whose marginals are z and /.

Francois Fleuret Deep learning / 11.2. Wasserstein GAN 4/20

Francois Fleuret

The Wasserstein distance can be defined as

W, ') = min Eox x| 1X = X,
(i) = __min | Bxxryg[1X = X'I]

where M(u, ') is the set of distributions over 22 whose marginals are ;1 and /.

So while it would make a lot of sense to look for a generator matching the
density for this metric, that is

G* = argmin W(y, ug)-
G

the definition of W is not an operational way of estimating it.

Deep learning / 11.2. Wasserstein GAN 4/20

A duality theorem from Kantorovich and Rubinstein implies

Wi ') = max Exe [f00] = Bxep [f(X)]

where

() = Ol

fll = max
Il = max

is the Lipschitz seminorm.

Francois Fleuret Deep learning / 11.2. Wasserstein GAN

5/20

Francois Fleuret Deep learning / 11.2. Wasserstein GAN 6/20

3 f
2
1
0
1 2 3 4 6 7 8 9 10
—1
1 1 1 1
=1 21 21 =1
r=glna + 2 13,4 T 5 110.10] iz 5 115.7]

Francois Fleuret Deep learning / 11.2. Wasserstein GAN 6/20

3 f
2
1
0
1 2 3 4 6 7 8 9 10
—1
1 1 1 1
=-1 21 21 r=21
=3 [1,2]'*‘4 [3,4]"1‘2 [9,10] iz 5 115.7]
1 1 1 1 1
W, p')=(3x > 4+1x-4+2x =) —[-1x=—-1x=)|=3
(ks) <X4+ i X2> (2 Xz)
Ex o, [f(X)] By o [F(X)]

Francois Fleuret Deep learning / 11.2. Wasserstein GAN 6/20

Using this result, we are looking for a generator

G" = arggﬂn W(k, 1g)
= argmin max (IEXNM [D(X)] — Ex~pe [D(X)]),

G |IDbll.<1

where the max is now an optimized predictor.

Francois Fleuret Deep learning / 11.2. Wasserstein GAN 7/20

Using this result, we are looking for a generator

G* = argmin W(p, 1g)
G

= arggnin H[rnlfél (EXN# [D(X)] — Ex~pe [D(X)]),

where the max is now an optimized predictor.

This is very similar to the original GAN formulation, except that the value of D
is not interpreted through a log-loss, and there is a strong regularization on D.

Francois Fleuret Deep learning / 11.2. Wasserstein GAN 7/20

The main issue in this formulation is to optimize the network D under a
constraint on its Lipschitz seminorm

D]l < 1.

Arjovsky et al. achieve this by clipping D’s weights.

Francois Fleuret Deep learning / 11.2. Wasserstein GAN 8/20

The two main benefits observed by Arjovsky et al. are

o A greater stability of the learning process, both in principle and in their
experiments: they do not witness “mode collapse”.

o A greater interpretability of the loss, which is a better indicator of the
quality of the samples.

Francois Fleuret Deep learning / 11.2. Wasserstein GAN

9/20

Francois Fleuret

1.0
— Density of real
08 — Density of fake
’ — GAN Discriminator
—— WGAN Critic
0.6
0.4
02 _—
0.0 (= emncipien.
\///
-02 N _— Vanishing gradients
_— in regular GAN
—0.4l—
-8 -6 -4 -2 0 2 4 6 8

Figure 2: Optimal discriminator and critic when learning to differentiate two Gaussians.
As we can see, the traditional GAN discriminator saturates and results in vanishing gra-
dients. Our WGAN critic provides very clean gradients on all parts of the space.

(Arjovsky et al., 2017)

Deep learning / 11.2. Wasserstein GAN 10/ 20

JsD estimate
JsD estimate

s 2

0 o
0 50000 100000 150000 200000 250000 300000 350000 400000 0 50000 100000 150000 200000 250000 300000 350000 400000
Generator iterations Generator iterations

— MLP_GMLP_D

5.4

JSD estimate

o
0 50000 100000 150000 200000 250000 300000 350000 400000

Figure 4: JS estimates for an MLP generator (upper left) and a DCGAN generator (upper
right) trained with the standard GAN procedure. Both had a DCGAN discriminator. Both
curves have increasing error. Samples get better for the DCGAN but the JS estimate
increases or stays constant, pointing towards no significant correlation between sample
quality and loss. Bottom: M LP with both generator and discriminator. The curve goes up
and down regardless of sample quality. All training curves were passed through the same
median filter as in Figure 3.

(Arjovsky et al., 2017)

Francois Fleuret Deep learning / 11.2. Wasserstein GAN 11/ 20

— MLPS12

EEEE
/

Wasserstein estimate

Wasserstein estimate

100000 200000 300000 400000 500000 600000 "% 100000 200000 300000 400000 500000 600000
Generator iterations Generator iterations

— MLP_GMLPD

Wasserstein estimate

0 100000 200000 300000 400000 500000 600000

Generator iterations

Figure 3: Training curves and samples at different stages of training. We can see a clear
correlation between lower error and better sample quality. Upper left: the generator is an
MLP with 4 hidden layers and 512 units at each layer. The loss decreases constistently as
training progresses and sample quality increases. Upper right: the generator is a standard
DCGAN. The loss decreases quickly and sample quality increases as well. In both upper
plots the critic is a DCGAN without the sigmoid so losses can be subjected to comparison.
Lower half: both the generator and the discriminator are MLPs with substantially high
learning rates (so training failed). Loss is constant and samples are constant as well. The
training curves were passed through a median filter for visualization purposes.

(Arjovsky et al., 2017)

Francois Fleuret Deep learning / 11.2. Wasserstein GAN 12/20

However, as Arjovsky et al. wrote:

“Weight clipping is a clearly terrible way to enforce a Lipschitz constraint. If
the clipping parameter is large, then it can take a long time for any weights
to reach their limit, thereby making it harder to train the critic till optimality.
If the clipping is small, this can easily lead to vanishing gradients when
the number of layers is big, or batch normalization is not used (such as in

RNNs).”

(Arjovsky et al., 2017)

Francois Fleuret Deep learning / 11.2. Wasserstein GAN 13/ 20

However, as Arjovsky et al. wrote:

“Weight clipping is a clearly terrible way to enforce a Lipschitz constraint. If
the clipping parameter is large, then it can take a long time for any weights
to reach their limit, thereby making it harder to train the critic till optimality.
If the clipping is small, this can easily lead to vanishing gradients when
the number of layers is big, or batch normalization is not used (such as in

RNN).”
(Arjovsky et al., 2017)

In some way, the resulting Wasserstein GAN (WGAN) trades the difficulty to
train G for the difficulty to train D.

Francois Fleuret Deep learning / 11.2. Wasserstein GAN 13/ 20

However, as Arjovsky et al. wrote:

“Weight clipping is a clearly terrible way to enforce a Lipschitz constraint. If
the clipping parameter is large, then it can take a long time for any weights
to reach their limit, thereby making it harder to train the critic till optimality.
If the clipping is small, this can easily lead to vanishing gradients when
the number of layers is big, or batch normalization is not used (such as in

RNN).”
(Arjovsky et al., 2017)

In some way, the resulting Wasserstein GAN (WGAN) trades the difficulty to
train G for the difficulty to train D.

In practice, this weakness results in extremely long convergence time.

Francois Fleuret Deep learning / 11.2. Wasserstein GAN 13/ 20

Spectral Normalization

Francois Fleuret Deep learning / 11.2. Wasserstein GAN 14 /20

Miyato et al. (2018) proposed to control the Lipschitz constant of D by
rescaling its weights, so that all the linear layers have their singular values lesser
than 1, and consequently Lipschitz constant, lesser than 1.

If the non-linear layers are also Lipschitz of constant lesser than 1 (e.g. ReLU),
this is a sufficient condition.

Francois Fleuret Deep learning / 11.2. Wasserstein GAN 15/ 20

Miyato et al. (2018) proposed to control the Lipschitz constant of D by
rescaling its weights, so that all the linear layers have their singular values lesser
than 1, and consequently Lipschitz constant, lesser than 1.

If the non-linear layers are also Lipschitz of constant lesser than 1 (e.g. ReLU),
this is a sufficient condition.

Spectral Normalization is a layer normalization that estimates the largest
singular value of a weight matrix, and rescale it accordingly.

While computing the SVD of a matrix is expensive, computing [a good
approximation of] the largest SV can be done iteratively for a reasonable cost.

Francois Fleuret Deep learning / 11.2. Wasserstein GAN 15/ 20

Francois Fleuret

The largest singular value of a matrix W is also its spectral norm

To calculate it, the power iteration

and v, and with

we have

o(W)= max ||Whl2
hi|[hll2<1

- W u,
T W T 2
Up+1 = 7WV"+1

[Wniall2

o(W) = nimoo u,] W,

Deep learning / 11.2. Wasserstein GAN

method starts with two random vectors ug

16 / 20

Francois Fleuret

W = torch.empty(15, 15).normal_()
print (W.svd().S.max())

u = torch.empty(W.size(0)) .normal_()

for k
v

v
u
u

in range(10):
=W.tO) @u

= v / v.norm()
=WaQev

= u / u.norm()

print(u.t() @ W @ v)

prints

tensor(7.9129)
tensor(7.9129)

Deep learning / 11.2. Wasserstein GAN

17 / 20

Miyato et al. update u, and v, before every gradient step, and rescale the
weight matrix accordingly.

The same can be done in PyTorch with torch.nn.utils.spectral_norm, that
wraps any linear layer into a module that performs the normalization.

Francois Fleuret Deep learning / 11.2. Wasserstein GAN 18/ 20

m = nn.Linear(5, 5)
print (m.weight.svd().S.max())

x = torch.rand (100, 5)
optimizer = torch.optim.SGD(m.parameters(), lr = le-1)

for k in range(100):
loss = -m(x).norm()
optimizer.zero_grad()
loss.backward ()
optimizer.step()

print(m.weight.svd().S.max())
prints

tensor(0.9277, grad_fn=<MaxBackwardl>)
tensor(114.1429, grad_fn=<MaxBackwardl>)

Francois Fleuret Deep learning / 11.2. Wasserstein GAN 19/ 20

m = nn.Linear(5, 5)
print(m.weight.svd().S.max())

m = nn.utils.spectral_norm(m)

x = torch.rand(100, 5)
optimizer = torch.optim.SGD(m.parameters(), 1lr = le-1)

for k in range(100):
loss = -m(x).norm()
optimizer.zero_grad()
loss.backward ()
optimizer.step()

print(m.weight.svd().S.max())

prints

tensor(0.8716, grad_fn=<MaxBackwardl>)
tensor(1.0000, grad_fn=<MaxBackwardi1>)

Francois Fleuret Deep learning / 11.2. Wasserstein GAN 20 /20

The end

References

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein GAN. CoRR, abs/1701.07875, 2017.

T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normalization for
generative adversarial networks. In International Conference on Learning
Representations (ICLR), 2018.

	Spectral Normalization

