Deep learning

10.2. Causal convolutions

François Fleuret

https://fleuret.org/dlc/
If we use an autoregressive model with a **masked input** as we saw in lecture 10.1. “Auto-regression”

\[f : \{0, 1\}^T \times \mathbb{R}^T \rightarrow \mathbb{R}^C \]

the input differs from a position to another.

During training, even though the full sequence is known, common computation is lost.
Instead of predicting [the distribution of] one component, the model could make a prediction at every position of the sequence, that is

\[f : \mathbb{R}^T \rightarrow \mathbb{R}^{T \times C}. \]

It can be used for synthesis with

\[
\begin{align*}
 x_1 & \leftarrow \text{sample} \left(f_1(0, \ldots, 0) \right) \\
 x_2 & \leftarrow \text{sample} \left(f_2(x_1, 0, \ldots, 0) \right) \\
 x_3 & \leftarrow \text{sample} \left(f_3(x_1, x_2, 0, \ldots, 0) \right) \\
 & \ldots \\
 x_T & \leftarrow \text{sample} \left(f_T(x_1, x_2, \ldots, x_{T-1}, 0) \right)
\end{align*}
\]

where the 0s simply fill in for unknown values, and the mask is not needed.
If additionally, the model is such that “future values” do not influence the prediction at a certain time, that is

$$\forall t, x_1, \ldots, x_t, \alpha_1, \ldots, \alpha_{T-t}, \beta_1, \ldots, \beta_{T-t},$$

$$f_{t+1}(x_1, \ldots, x_t, \alpha_1, \ldots, \alpha_{T-t}) = f_{t+1}(x_1, \ldots, x_t, \beta_1, \ldots, \beta_{T-t})$$

then, we have in particular

$$f_1(0, \ldots, 0) = f_1(x_1, \ldots, x_T)$$

$$f_2(x_1, 0, \ldots, 0) = f_2(x_1, \ldots, x_T)$$

$$f_3(x_1, x_2, 0, \ldots, 0) = f_3(x_1, \ldots, x_T)$$

$$\ldots$$

$$f_T(x_1, x_2, \ldots, x_{T-1}, 0) = f_T(x_1, \ldots, x_T)$$
Which provides a tremendous computational advantage during training, since

\[
\ell(f, x) = \sum_u \ell(f_u(x_1, \ldots, x_{u-1}, 0, \ldots, 0), x_u)
\]

\[
= \sum_u \ell(f_u(x_1, \ldots, x_T), x_u).
\]

\(f\) is computed once

Such models are referred to as causal, since the future cannot affect the past.
We can illustrate this with convolutional models. Standard convolutions let information flow “to the past,” and masked input was a way to condition only on already generated values.
We can illustrate this with convolutional models. Standard convolutions let information flow “to the past,” and masked input was a way to condition only on already generated values.
We can illustrate this with convolutional models. Standard convolutions let information flow “to the past,” and masked input was a way to condition only on already generated values.
Such a model can be made **causal** with convolutions that let information flow only to the future, combined with a first convolution that hides the present.
Such a model can be made **causal** with convolutions that let information flow only to the future, combined with a first convolution that hides the present.
Another option for the first layer is to shift the input by one entry to hide the present.

Diagram Description

- **Padding**: Two zeros are added at the beginning of the input sequence to create a padded version of the input.
- **Padded-shifted right**: The sequence is then shifted to the right, with the padding elements remaining in place, effectively hiding the present entry.
PyTorch’s convolutional layers do not accept asymmetric padding, but we can do it with `F.pad`, which even accepts negative padding to remove entries.

For a n-dim tensor, the padding specification is

$$(start_n, end_n, start_{n-1}, end_{n-1}, \ldots, start_{n-k}, end_{n-k})$$

```python
torch.randint(10, (2, 1, 5))
torch.randint(10, (2, 1, 5)).unsqueeze_(-1)
F.pad(x, (2, 2))
F.pad(x, (1, 1, 1, 1))
```

Similar processing can be achieved with the modules `nn.ConstantPad1d`, `nn.ConstantPad2d`, or `nn.ConstantPad3d`.

François Fleuret Deep learning / 10.2. Causal convolutions 8 / 25
PyTorch’s convolutional layers do not accept asymmetric padding, but we can do it with \texttt{F.pad}, which even accepts negative padding to remove entries.

For a \textit{n}-dim tensor, the padding specification is

\[(\text{start}_n, \text{end}_n, \text{start}_{n-1}, \text{end}_{n-1}, \ldots, \text{start}_{n-k}, \text{end}_{n-k})\]

```python
>>> x = torch.randint(10, (2, 1, 5))
>>> x
    tensor([[1, 6, 3, 9, 1],
             [4, 8, 2, 2, 9]])
>>> F.pad(x, (-1, 1))
    tensor([[6, 3, 9, 1, 0],
             [8, 2, 2, 9, 0]])
>>> F.pad(x, (0, 0, 2, 0))
    tensor([[0, 0, 0, 0, 0],
             [0, 0, 0, 0, 0],
             [1, 6, 3, 9, 1]],
            [[0, 0, 0, 0, 0],
             [0, 0, 0, 0, 0],
             [4, 8, 2, 2, 9]])
```

Similar processing can be achieved with the modules \texttt{nn.ConstantPad1d}, \texttt{nn.ConstantPad2d}, or \texttt{nn.ConstantPad3d}.
Here some train sequences as in lecture 10.1. “Auto-regression”.
Model

class NetToy1d(nn.Module):
 def __init__(self, nb_classes, ks = 2, nc = 32):
 super().__init__()
 self.pad = (ks - 1, 0)
 self.conv0 = nn.Conv1d(1, nc, kernel_size = 1)
 self.conv1 = nn.Conv1d(nc, nc, kernel_size = ks)
 self.conv2 = nn.Conv1d(nc, nc, kernel_size = ks)
 self.conv3 = nn.Conv1d(nc, nc, kernel_size = ks)
 self.conv4 = nn.Conv1d(nc, nc, kernel_size = ks)
 self.conv5 = nn.Conv1d(nc, nb_classes, kernel_size = 1)

 def forward(self, x):
 x = F.relu(self.conv0(F.pad(x, (1, -1))))
 x = F.relu(self.conv1(F.pad(x, self.pad)))
 x = F.relu(self.conv2(F.pad(x, self.pad)))
 x = F.relu(self.conv3(F.pad(x, self.pad)))
 x = F.relu(self.conv4(F.pad(x, self.pad)))
 x = self.conv5(x)
 return x.permute(0, 2, 1).contiguous()
Training loop

```
for sequences in train_input.split(args.batch_size):
    input = (sequences - mean)/std

    output = model(input)

    loss = cross_entropy(
        output.view(-1, output.size(-1)),
        sequences.view(-1)
    )

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
```
Synthesis

generated = train_input.new_zeros((48,) + train_input.size()[1:])

flat = generated.view(generated.size(0), -1)

for t in range(flat.size(1)):
 input = (generated.float() - mean) / std
 output = model(input)
 logits = output.view(flat.size() + (-1,))[:, t]
 dist = torch.distributions.categorical.Categorical(logits = logits)
 flat[:, t] = dist.sample()
Some generated sequences
The global structure may not be properly generated.
The global structure may not be properly generated.

This can be fixed with \textit{dilated convolutions} to have a larger context.
Model

class NetToy1dWithDilation(nn.Module):
 def __init__(self, nb_classes, ks = 2, nc = 32):
 super().__init__()
 self.conv0 = nn.Conv1d(1, nc, kernel_size = 1)
 self.pad1 = ((ks-1) * 2, 0)
 self.conv1 = nn.Conv1d(nc, nc, kernel_size = ks, dilation = 2)
 self.pad2 = ((ks-1) * 4, 0)
 self.conv2 = nn.Conv1d(nc, nc, kernel_size = ks, dilation = 4)
 self.pad3 = ((ks-1) * 8, 0)
 self.conv3 = nn.Conv1d(nc, nc, kernel_size = ks, dilation = 8)
 self.pad4 = ((ks-1) * 16, 0)
 self.conv4 = nn.Conv1d(nc, nc, kernel_size = ks, dilation = 16)
 self.conv5 = nn.Conv1d(nc, nb_classes, kernel_size = 1)

 def forward(self, x):
 x = F.relu(self.conv0(F.pad(x, (1, -1))))
 x = F.relu(self.conv1(F.pad(x, self.pad1)))
 x = F.relu(self.conv2(F.pad(x, self.pad2)))
 x = F.relu(self.conv3(F.pad(x, self.pad3)))
 x = F.relu(self.conv4(F.pad(x, self.pad4)))
 x = self.conv5(x)
 return x.permute(0, 2, 1).contiguous()
Some generated sequences
The WaveNet model proposed by Oord et al. (2016a) for voice synthesis relies in large part on such an architecture.

Because models with causal convolutions do not have recurrent connections, they are typically faster to train than RNNs, especially when applied to very long sequences. One of the problems of causal convolutions is that they require many layers, or large filters to increase the receptive field. For example, in Fig. 2 the receptive field is only $5 = \#\text{layers} + \text{filter length} - 1$. In this paper we use dilated convolutions to increase the receptive field by orders of magnitude, without greatly increasing computational cost.

A dilated convolution (also called `a trous, or convolution with holes) is a convolution where the filter is applied over an area larger than its length by skipping input values with a certain step. It is equivalent to a convolution with a larger filter derived from the original filter by dilating it with zeros, but is significantly more efficient. A dilated convolution effectively allows the network to operate on a coarser scale than with a normal convolution. This is similar to pooling or strided convolutions, but here the output has the same size as the input. As a special case, dilated convolution with dilation 1 yields the standard convolution. Fig. 3 depicts dilated causal convolutions for dilations 1, 2, 4, and 8.

Figure 3: Visualization of a stack of dilated causal convolutional layers.

Stacked dilated convolutions enable networks to have very large receptive fields with just a few layers, while preserving the input resolution throughout the network as well as computational efficiency. In this paper, the dilation is doubled for every layer up to a limit and then repeated: e.g. 1, 2, 4, ..., 512, 1, 2, 4, ... , 512, 1, 2, 4, ... , 512.

The intuition behind this configuration is two-fold. First, exponentially increasing the dilation factor results in exponential receptive field growth with depth (Yu & Koltun, 2016). For example each 1, 2, 4, ..., 512 block has receptive field of size 1024, and can be seen as a more efficient and discriminative (non-linear) counterpart of a 1 × 1024 convolution. Second, stacking these blocks further increases the model capacity and the receptive field size.

2.2 SOFTMAX DISTRIBUTIONS

One approach to modeling the conditional distributions $p(x_t|x_1,\ldots,x_{t-1})$ over the individual audio samples would be to use a mixture model such as a mixture density network (Bishop, 1994) or mixture of conditional Gaussian scale mixtures (MCGSM) (Theis & Bethge, 2015). However, van den Oord et al. (2016a) showed that a softmax distribution tends to work better, even when the data is implicitly continuous (as is the case for image pixel intensities or audio sample values). One of the reasons is that a categorical distribution is more flexible and can more easily model arbitrary distributions because it makes no assumptions about their shape.

Because raw audio is typically stored as a sequence of 16-bit integer values (one per timestep), a softmax layer would need to output 65,536 probabilities per timestep to model all possible values. To make this more tractable, we first apply a μ-law companding transformation (ITU-T, 1988) to the data, and then quantize it to 256 possible values:

$$f(x_t) = \text{sign}(x_t) \ln (1 + \mu |x_t|)$$

(Oord et al., 2016a)
Causal convolutions for images
The same mechanism can be implemented for images, using causal convolution:

Figure 1: **Left**: A visualization of the PixelCNN that maps a neighborhood of pixels to prediction for the next pixel. To generate pixel x_i the model can only condition on the previously generated pixels x_1, \ldots, x_{i-1}. **Middle**: an example matrix that is used to mask the 5x5 filters to make sure the model cannot read pixels below (or strictly to the right) of the current pixel to make its predictions. **Right**: Top: PixelCNNs have a *blind spot* in the receptive field that can not be used to make predictions. Bottom: Two convolutional stacks (blue and purple) allow to capture the whole receptive field.

(Oord et al., 2016b)
ks = 5
hpad = (ks//2, ks//2, ks//2, 0)
conv1h = nn.Conv2d(1, 1, kernel_size = (ks//2+1, ks))
conv2h = nn.Conv2d(1, 1, kernel_size = (ks//2+1, ks))
vpad = (ks//2, 0, 0, 0)
conv1v = nn.Conv2d(1, 1, kernel_size = (1, ks//2+1))
conv2v = nn.Conv2d(1, 1, kernel_size = (1, ks//2+1))

x = F.pad(x, (0, 0, 1, -1))
x = conv1h(F.pad(x, hpad))
x = conv2h(F.pad(x, hpad))

x = F.pad(x, (1, -1, 0, 0))
x = conv1v(F.pad(x, vpad))
x = conv2v(F.pad(x, vpad))
class PixelCNN(nn.Module):
 def __init__(self, nb_classes, in_channels = 1, ks = 5):
 super().__init__()

 self.hpad = (ks//2, ks//2, ks//2, 0)
 self.vpad = (ks//2, 0, 0, 0)

 self.conv1h = nn.Conv2d(in_channels, 32, kernel_size = (ks//2+1, ks))
 self.conv2h = nn.Conv2d(32, 64, kernel_size = (ks//2+1, ks))
 self.conv1v = nn.Conv2d(in_channels, 32, kernel_size = (1, ks//2+1))
 self.conv2v = nn.Conv2d(32, 64, kernel_size = (1, ks//2+1))
 self.final1 = nn.Conv2d(128, 128, kernel_size = 1)
 self.final2 = nn.Conv2d(128, nb_classes, kernel_size = 1)

 def forward(self, x):
 xh = F.pad(x, (0, 0, 1, -1))
 xv = F.pad(x, (1, -1, 0, 0))
 xh = F.relu(self.conv1h(F.pad(xh, self.hpad)))
 xv = F.relu(self.conv1v(F.pad(xv, self.vpad)))
 xh = F.relu(self.conv2h(F.pad(xh, self.hpad)))
 xv = F.relu(self.conv2v(F.pad(xv, self.vpad)))
 x = F.relu(self.final1(torch.cat((xh, xv), 1)))
 x = self.final2(x)

 return x.permute(0, 2, 3, 1).contiguous()
Some generated images
Such a fully convolutional model has no way to make the prediction position-dependent, which results here in local consistency, but fragmentation.

A classical fix is to supplement the input with a **positional encoding**, that is a multi-channel input that provides full information about the location.
Such a fully convolutional model has no way to make the prediction position-dependent, which results here in local consistency, but fragmentation.

A classical fix is to supplement the input with a positional encoding, that is a multi-channel input that provides full information about the location.

Here with a resolution of 28×28 we can encode the positions with 5 Boolean channels per coordinate.
Row index encoding

Column index encoding

Input tensor with positional encoding

Row index encoding

Column index encoding
Some generated images
The end
References
