
Deep learning

9.4. Optimizing inputs

François Fleuret

https://fleuret.org/dlc/

https://fleuret.org/dlc/

A strategy to get an intuition of the information actually encoded in the weights
of a convnet consists of optimizing from scratch a sample to maximize the
activation f of a chosen unit, or the sum over an activation map.

François Fleuret Deep learning / 9.4. Optimizing inputs 1 / 25

Doing so generates images with high frequencies, which tend to activate units a
lot. For instance these images maximize the responses of the units “bathtub”
and “lipstick” respectively (yes, this is strange, we will come back to it).

François Fleuret Deep learning / 9.4. Optimizing inputs 2 / 25

Since f is trained in a discriminative manner, a sample x̂ maximizing it has no
reason to be “realistic”.

Class 0 Class 1

f

p

−h

f − h

x̂x∗

We can mitigate this by adding a penalty h corresponding to a “realistic” prior,
that is compute

x∗ = argmax
x

f (x ;w)− h(x)

by iterating a standard gradient update:

xk+1 = xk − η∇|x (h(xk)− f (xk ;w)).

François Fleuret Deep learning / 9.4. Optimizing inputs 3 / 25

Notes

The key issue is that given a target y , a sample x̂
maximizing P(Y = y | X = x̂) can be extremely
unlikely, that is can lead to an arbitrarily small
P(X = x̂ | Y = y).
For instance, under a Gaussian model of the men
and women heights, although it is very unlikely
that a man would be 3m tall, a 3m tall human
would be far more likely to be a man than a
woman than a 2m tall human.

A reasonable h penalizes too much energy in the high frequencies by integrating edge
amplitude at multiple scales.

François Fleuret Deep learning / 9.4. Optimizing inputs 4 / 25

Notes

We saw that the baseline procedure generates
too much high frequencies. The goal is to de-
sign a penalty which spreads the energy across
frequencies.
The images of the top row here shows the same
original image at different resolutions. The sec-
ond row shows blurred versions of them. And the
third row is the difference between the two.
The more non-zero pixels there is in the left
images of that third row, the greater the energy
in the high frequencies.

This can be formalized as a penalty function h of the form

h(x) =
∑
s≥0

∥δs(x)− g ⊛ δs(x)∥2

where g is a Gaussian kernel, and δ is a downscale-by-two operator.

François Fleuret Deep learning / 9.4. Optimizing inputs 5 / 25

Notes

The penalty is the sum across scales of the square
distance between a downscaled image δs (x) and
a blurred version of it g ⊛ δs(x). Each term in
the sum is one of the images of the third row of
the previous slide.
The quadratic form of this penalty makes it lower
when the energy is spread-out across terms.

h(x) =
∑
s≥0

∥δs(x)− g ⊛ δs(x)∥2

We process channels as separate images, and sum across channels in the end.

class MultiScaleEdgeEnergy(nn.Module):
def __init__(self):

super().__init__()
k = torch.exp(- torch.tensor([[-2., -1., 0., 1., 2.]])**2 / 2)
k = (k.t() @ k).view(1, 1, 5, 5)
self.register_buffer('gaussian_5x5', k / k.sum())

def forward(self, x):
u = x.view(-1, 1, x.size(2), x.size(3))
result = 0.0
while min(u.size(2), u.size(3)) > 5:

blurry = F.conv2d(u, self.gaussian_5x5, padding = 2)
result += (u - blurry).view(u.size(0), -1).pow(2).sum(1)
u = F.avg_pool2d(u, kernel_size = 2, padding = 1)

result = result.view(x.size(0), -1).sum(1)
return result

François Fleuret Deep learning / 9.4. Optimizing inputs 6 / 25

Then, the optimization of the image per se is straightforward:

model = models.vgg16(weights = 'IMAGENET1K_V1')
model.eval()
edge_energy = MultiScaleEdgeEnergy()
input = torch.empty(1, 3, 224, 224).normal_(0, 0.01)

input.requires_grad_()
optimizer = optim.Adam([input], lr = 1e-1)

for k in range(250):
output = model(input)
score = edge_energy(input) - output[0, 700] # paper towel
optimizer.zero_grad()
score.backward()
optimizer.step()

result = 0.5 + 0.1 * (input - input.mean()) / input.std()
torchvision.utils.save_image(result, 'dream-course-example.png')

(take a second to think about the beauty of autograd)

François Fleuret Deep learning / 9.4. Optimizing inputs 7 / 25

Notes

This code shows how to optimize an image to
make a specific unit have a high response, here
the output unit of index 700 corresponding to
the class “paper towel”
The image to optimize is initialized with Gaussian
noise of standard deviation 0.01, and with the
default input size of VGG nets 3 × 224 × 224.
requires_grad_() is called on the corresponding
tensor because the derivative of the loss w.r.t. it
will be needed.

VGG16, maximizing a channel of the 4th convolution layer

François Fleuret Deep learning / 9.4. Optimizing inputs 8 / 25

VGG16, maximizing a channel of the 7th convolution layer

François Fleuret Deep learning / 9.4. Optimizing inputs 9 / 25

VGG16, maximizing a unit of the 10th convolution layer

François Fleuret Deep learning / 9.4. Optimizing inputs 10 / 25

Notes

In the 10th layer, we optimize a single unit in the
center. Therefore, only its receptive field in the
input image can be optimized.

VGG16, maximizing a unit of the 13th (and last) convolution layer

François Fleuret Deep learning / 9.4. Optimizing inputs 11 / 25

Notes

In the 13th layer, we optimize a single unit in the
center. The receptive field is larger than in the
10th layer, causing the pattern to be larger than
before. Here, pieces of objects are emerging.

VGG16, maximizing a unit of the output layer

“Box turtle” “Whiptail lizard”

François Fleuret Deep learning / 9.4. Optimizing inputs 12 / 25

Notes

Here, the output unit corresponding to an actual
class is maximized.
Despite many parts of the class object being
present in the generated image, one major short-
coming is that the numbers of parts is wrong
and they are the overall consistency (symmetry,
relative positions) is not enforced. Big chunks
are present but the general structure is incorrect.
We can also see patterns emerging which are not
directly the class itself, but other objects often
present in the context of the picture: chairs or
tables for class “king crab”, castle or domes for
“geyser”, etc.

VGG16, maximizing a unit of the output layer

“African chameleon” “Wolf spider”

François Fleuret Deep learning / 9.4. Optimizing inputs 13 / 25

VGG16, maximizing a unit of the output layer

“King crab” “Samoyed” (that’s a fluffy dog)

François Fleuret Deep learning / 9.4. Optimizing inputs 14 / 25

Notes

For the crab, we can recognize legs. There are
other rectangular patterns which are probably due
to crabs being usually photographed on plates in
restaurants, and these pattern may come from
the corners of chairs or tables.

VGG16, maximizing a unit of the output layer

“Hourglass” “Paper towel”

François Fleuret Deep learning / 9.4. Optimizing inputs 15 / 25

VGG16, maximizing a unit of the output layer

“Ping-pong ball” “Steel arch bridge”

François Fleuret Deep learning / 9.4. Optimizing inputs 16 / 25

VGG16, maximizing a unit of the output layer

“Sunglass” “Geyser”

François Fleuret Deep learning / 9.4. Optimizing inputs 17 / 25

These results show that the parameters of a network trained for classification carry
enough information to generate identifiable large-scale structures.

Although the training is discriminative, the resulting model has strong generative
capabilities.

It also gives an intuition of the accuracy and shortcomings of the resulting global
compositional model.

François Fleuret Deep learning / 9.4. Optimizing inputs 18 / 25

Adversarial examples

François Fleuret Deep learning / 9.4. Optimizing inputs 19 / 25

In spite of their good predictive capabilities, deep neural networks are quite sensitive to
adversarial inputs, that is to inputs crafted to make them behave incorrectly (Szegedy
et al., 2014).

The simplest strategy to exhibit such behavior is to optimize the input to maximize the
loss.

François Fleuret Deep learning / 9.4. Optimizing inputs 20 / 25

Let x be an image, y its proper label, f (x ;w) the network’s prediction, and ℒ the
cross-entropy loss. We can construct an adversarial example by maximizing the loss. To
do so, we iterate a “gradient ascent” step:

xk+1 = xk + η∇|xℒ (f (xk ;w), y).

After a few iterations, this procedure will reach a sample x̌ whose class is not y .

The counter-intuitive result is that the resulting miss-classified images are
indistinguishable from the original ones to a human eye.

François Fleuret Deep learning / 9.4. Optimizing inputs 21 / 25

Notes

Usually what is done during backpropagation, is
to optimize the parameters w of a model to min-
imize the loss. Here, to generate an adversarial
sample, we optimize the input sample x to maxi-
mize the loss.

model = torchvision.models.alexnet(weights = 'IMAGENET1K_V1')
target = model(input).argmax(1).view(-1)

cross_entropy = nn.CrossEntropyLoss()
optimizer = optim.SGD([input], lr = 1e-1)
nb_steps = 15

for k in range(nb_steps):
output = model(input)
loss = - cross_entropy(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()

François Fleuret Deep learning / 9.4. Optimizing inputs 22 / 25

Notes

To perform gradient ascent, we do gradient de-
scent on the opposite of the loss, hence the minus
sign.

Original

Adversarial

Differences
(magnified)

∥x−x̌∥
∥x∥ 1.02% 0.27%

François Fleuret Deep learning / 9.4. Optimizing inputs 23 / 25

Notes

The images in the top row are the originals, re-
spectively classified (correctly) as “Weimaraner”
and “desktop computer”. The images of the sec-
ond row are the adversarial examples obtained
with the optimization presented in the previous
slide, which are classified respectively as “sundial”
and “desk”.
The surprising and counter-intuitive observation
is that these latter images do not differ substan-
tially from the original images to the human eye.

Predicted classes

Nb. iterations Image #1 Image #2

0 Weimaraner desktop computer

1 Weimaraner desktop computer

2 Labrador retriever desktop computer

3 Labrador retriever desktop computer

4 Labrador retriever desktop computer

5 brush kangaroo desktop computer

6 brush kangaroo desktop computer

7 sundial desktop computer

8 sundial desktop computer

9 sundial desktop computer

10 sundial desktop computer

11 sundial desktop computer

12 sundial desktop computer

13 sundial desktop computer

14 sundial desk

François Fleuret Deep learning / 9.4. Optimizing inputs 24 / 25

Notes

We monitor here the classification of the mod-
ified images after each step of the adversarial
optimization. We see that the dog is initially
[miss-]classified as other animals before being
[miss-]classified as “sundial”. This mistake may
be due to the dark bars in the sewer grid that
resemble elongated shadows.

Another counter-intuitive result is that if we sample 1, 000 images on the sphere
centered on x of radius 2∥x − x̌∥, we do not observe any change of label.

x

x̌

François Fleuret Deep learning / 9.4. Optimizing inputs 25 / 25

Notes

• x represents a correctly classified image by
the network.

• x̌ is the adversarial sample generated by
gradient ascent: it is misclassified by the
network.

• The red line shows the boundary between
the correct class and the class the
adversarial sample is classified in.

• The gray circle shows the samples which
are equidistant to x , at the same distance
between x and x̌ : they have a perturbation
of the same magnitude.

• A large part of the circle is on the same
size as x : thus corresponds to the set of
samples correctly classified by the model.

• A small portion of the circle is on the other
side of the boundary: these are the
samples misclassified by the network.

When we randomly select 1,000 samples on the
circle, that is samples as perturbed as x̌ is from
x , none of them are misclassified: a random per-
turbation of the same magnitude is statistically
very unlikely to actually fool the network.

References

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing
properties of neural networks. In International Conference on Learning Representations (ICLR),
2014.

	Adversarial examples
	References

