Understanding what is happening in a deep architectures after training is complex and the tools we have at our disposal are limited.

In the case of convolutional feed-forward networks, we can look at

- the network’s parameters, filters as images,
- internal activations on a single sample as images,
- derivatives of the response(s) wrt the input,
- maximum-response synthetic samples,
- adversarial samples.

We can also look at distributions of activations on a population of samples at different stages in a model.
Given a one-hidden layer fully connected network $\mathbb{R}^2 \to \mathbb{R}^2$

$\text{nb_hidden} = 20$

$\text{model} = \text{nn.Sequential(}
\text{ \text{nn.Linear(2, nb_hidden)},
\text{ \text{nn.ReLU()},
\text{ \text{nn.Linear(nb_hidden, 2)}
\text{})
}$

we can visit the parameters (w, b) of each hidden units with

$\text{for } k \text{ in range(model[0].weight.size(0)):}
\text{ w = model[0].weight[k]}
\text{ b = model[0].bias[k]}
$

and draw for each the line

$$\{ x : w \cdot x + b = 0 \}.$$

During training, these separations get organized so that their combination partitions properly the signal space.
A similar analysis is complicated to conduct with real-life networks given the high dimension of the signal.

The simplest approach for convnets consists of looking at the filters as images.

While it is quite reasonable in the first layer, since the filters are indeed consistent with the image input, it is far less so in the subsequent layers.
LeNet’s first convolutional layer (1 → 32), all filters

LeNet’s second convolutional layer (32 → 64), first 32 filters out of 64
AlexNet's first convolutional layer \((3 \rightarrow 64)\), first 20 filters out of 64

or as RGB images

AlexNet's second convolutional layer \((64 \rightarrow 192)\). First 15 channels (out of 64) of the first 20 filters (out of 192).