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The historical approach to image segmentation was to define a measure of
similarity between pixels, and to cluster groups of similar pixels. Such
approaches account poorly for semantic content.

The deep-learning approach re-casts semantic segmentation as pixel
classification, and re-uses networks trained for image classification by making
them fully convolutional.
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Shelhamer et al. (2016) proposed the FCN (“Fully Convolutional Network”)
that uses a pre-trained classification network (e.g. VGG 16 layers).

The fully connected layers are converted to 1× 1 convolutional filters, and the
final one retrained for 21 output channels (VOC 20 classes + “background”).

Since VGG16 has 5 max-pooling with 2× 2 kernels, with proper padding, the
output is 1/25 = 1/32 the size of the input.

This map is then up-scaled with a transposed convolution layer with kernel
64× 64 and stride 32× 32 to get a final map of same size as the input image.

Training is achieved with full images and pixel-wise cross-entropy, starting with
a pre-trained VGG16. All layers are fine-tuned, although fixing the up-scaling
transposed convolution to bilinear does as well.
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Notes

The added “background” class is added for pixels
that do not belong to any of the defined object
and avoid forcing the network to make a incon-
sistent choice.
Since segmentation aims at classifying the indi-
vidual pixels, the size of the final tensor should
be of the same size as the input image. Since the
activation maps have been reduced by pooling
operations, the size has to be increase back.
As seen in lecture 7.1. “Transposed convolutions”
up-sampling an activation map can be done with
bilinear interpolation, or transposed convolution
layers.
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Notes

The last fc-conv makes the prediction output of
the 21 classes from the activation maps which
is 1/32 of the original image size. Then, the
classification maps are up-sampled by a 32 factor
up to the original image size by the transposed
convolution layer.



Although the FCN achieved almost state-of-the-art results when published, its main
weakness is the coarseness of the signal from which the final output is produced (1/32
of the original resolution).

Shelhamer et al. proposed an additional element, that consists of using the same
prediction/up-scaling from intermediate layers of the VGG network.
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Notes

The coarseness of the prediction is reduced by
adding intermediate predictions which are less
refined in term of features, but of greater resolu-
tion.



9

FCN-8s SDS [14] Ground Truth Image

Fig. 6. Fully convolutional networks improve performance on PASCAL.
The left column shows the output of our most accurate net, FCN-8s. The
second shows the output of the previous best method by Hariharan et al.
[14]. Notice the fine structures recovered (first row), ability to separate
closely interacting objects (second row), and robustness to occluders
(third row). The fifth and sixth rows show failure cases: the net sees
lifejackets in a boat as people and confuses human hair with a dog.

6 ANALYSIS

We examine the learning and inference of fully convolu-
tional networks. Masking experiments investigate the role of
context and shape by reducing the input to only foreground,
only background, or shape alone. Defining a “null” back-
ground model checks the necessity of learning a background
classifier for semantic segmentation. We detail an approxi-
mation between momentum and batch size to further tune
whole image learning. Finally, we measure bounds on task
accuracy for given output resolutions to show there is still
much to improve.

6.1 Cues

Given the large receptive field size of an FCN, it is natural
to wonder about the relative importance of foreground and
background pixels in the prediction. Is foreground appear-
ance sufficient for inference, or does the context influence
the output? Conversely, can a network learn to recognize a
class by its shape and context alone?

Masking To explore these issues we experiment with
masked versions of the standard PASCAL VOC segmenta-
tion challenge. We both mask input to networks trained on
normal PASCAL, and learn new networks on the masked
PASCAL. See Table 8 for masked results.

TABLE 8
The role of foreground, background, and shape cues. All scores are the

mean intersection over union metric excluding background. The
architecture and optimization are fixed to those of FCN-32s (Reference)

and only input masking differs.

train test

FG BG FG BG mean IU

Reference keep keep keep keep 84.8
Reference-FG keep keep keep mask 81.0
Reference-BG keep keep mask keep 19.8
FG-only keep mask keep mask 76.1
BG-only mask keep mask keep 37.8
Shape mask mask mask mask 29.1

Masking the foreground at inference time is catastrophic.
However, masking the foreground during learning yields
a network capable of recognizing object segments without
observing a single pixel of the labeled class. Masking the
background has little effect overall but does lead to class
confusion in certain cases. When the background is masked
during both learning and inference, the network unsurpris-
ingly achieves nearly perfect background accuracy; however
certain classes are more confused. All-in-all this suggests
that FCNs do incorporate context even though decisions are
driven by foreground pixels.

To separate the contribution of shape, we learn a net
restricted to the simple input of foreground/background
masks. The accuracy in this shape-only condition is lower
than when only the foreground is masked, suggesting that
the net is capable of learning context to boost recognition.
Nonetheless, it is surprisingly accurate. See Figure 7.

Background modeling It is standard in detection and
semantic segmentation to have a background model. This
model usually takes the same form as the models for the
classes of interest, but is supervised by negative instances.
In our experiments we have followed the same approach,
learning parameters to score all classes including back-
ground. Is this actually necessary, or do class models suffice?

To investigate, we define a net with a “null” background
model that gives a constant score of zero. Instead of train-
ing with the softmax loss, which induces competition by
normalizing across classes, we train with the sigmoid cross-
entropy loss, which independently normalizes each score.
For inference each pixel is assigned the highest scoring class.
In all other respects the experiment is identical to our FCN-
32s on PASCAL VOC. The null background net scores 1
point lower than the reference FCN-32s and a control FCN-
32s trained on all classes including background with the
sigmoid cross-entropy loss. To put this drop in perspective,
note that discarding the background model in this way
reduces the total number of parameters by less than 0.1%.
Nonetheless, this result suggests that learning a dedicated
background model for semantic segmentation is not vital.

6.2 Momentum and batch size
In comparing optimization schemes for FCNs, we find that
“heavy” online learning with high momentum trains more
accurate models in less wall clock time (see Section 4.2).
Here we detail a relationship between momentum and batch
size that motivates heavy learning.

Left column is the best network from Shelhamer et al. (2016).
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Image Ground Truth Output Input

Fig. 7. FCNs learn to recognize by shape when deprived of other input
detail. From left to right: regular image (not seen by network), ground
truth, output, mask input.

By writing the updates computed by gradient accumu-
lation as a non-recursive sum, we will see that momentum
and batch size can be approximately traded off, which
suggests alternative training parameters. Let gt be the step
taken by minibatch SGD with momentum at time t,

gt = −η
k−1∑

i=0

∇θ`(xkt+i; θt−1) + pgt−1,

where `(x; θ) is the loss for example x and parameters θ,
p < 1 is the momentum, k is the batch size, and η is the
learning rate. Expanding this recurrence as an infinite sum
with geometric coefficients, we have

gt = −η
∞∑

s=0

k−1∑

i=0

ps∇θ`(xk(t−s)+i; θt−s).

In other words, each example is included in the sum with
coefficient pbj/kc, where the index j orders the examples
from most recently considered to least recently considered.
Approximating this expression by dropping the floor, we see
that learning with momentum p and batch size k appears
to be similar to learning with momentum p′ and batch
size k′ if p(1/k) = p′(1/k

′). Note that this is not an exact
equivalence: a smaller batch size results in more frequent
weight updates, and may make more learning progress for
the same number of gradient computations. For typical FCN
values of momentum 0.9 and a batch size of 20 images, an
approximately equivalent training regime uses momentum
0.9(1/20) ≈ 0.99 and a batch size of one, resulting in online

learning. In practice, we find that online learning works well
and yields better FCN models in less wall clock time.

6.3 Upper bounds on IU

FCNs achieve good performance on the mean IU segmen-
tation metric even with spatially coarse semantic predic-
tion. To better understand this metric and the limits of
this approach with respect to it, we compute approximate
upper bounds on performance with prediction at various
resolutions. We do this by downsampling ground truth
images and then upsampling back to simulate the best
results obtainable with a particular downsampling factor.
The following table gives the mean IU on a subset5 of
PASCAL 2011 val for various downsampling factors.

factor mean IU

128 50.9
64 73.3
32 86.1
16 92.8
8 96.4
4 98.5

Pixel-perfect prediction is clearly not necessary to
achieve mean IU well above state-of-the-art, and, con-
versely, mean IU is a not a good measure of fine-scale accu-
racy. The gaps between oracle and state-of-the-art accuracy
at every stride suggest that recognition and not resolution is
the bottleneck for this metric.

7 CONCLUSION

Fully convolutional networks are a rich class of models that
address many pixelwise tasks. FCNs for semantic segmen-
tation dramatically improve accuracy by transferring pre-
trained classifier weights, fusing different layer representa-
tions, and learning end-to-end on whole images. End-to-
end, pixel-to-pixel operation simultaneously simplifies and
speeds up learning and inference. All code for this paper is
open source in Caffe, and all models are freely available in
the Caffe Model Zoo. Further works have demonstrated the
generality of fully convolutional networks for a variety of
image-to-image tasks.
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Results with a network trained from mask only (Shelhamer et al., 2016).
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The most sophisticated object detection methods achieve instance segmentation and
estimate a segmentation mask per detected object.

Mask R-CNN (He et al., 2017) adds a branch to the Faster R-CNN model to estimate a
mask for each detected region of interest.

Mask R-CNN

Kaiming He Georgia Gkioxari Piotr Dollár Ross Girshick

Facebook AI Research (FAIR)

Abstract

We present a conceptually simple, flexible, and general
framework for object instance segmentation. Our approach
efficiently detects objects in an image while simultaneously
generating a high-quality segmentation mask for each in-
stance. The method, called Mask R-CNN, extends Faster
R-CNN by adding a branch for predicting an object mask in
parallel with the existing branch for bounding box recogni-
tion. Mask R-CNN is simple to train and adds only a small
overhead to Faster R-CNN, running at 5 fps. Moreover,
Mask R-CNN is easy to generalize to other tasks, e.g., al-
lowing us to estimate human poses in the same framework.
We show top results in all three tracks of the COCO suite
of challenges, including instance segmentation, bounding-
box object detection, and person keypoint detection. With-
out bells and whistles, Mask R-CNN outperforms all ex-
isting, single-model entries on every task, including the
COCO 2016 challenge winners. We hope our simple and
effective approach will serve as a solid baseline and help
ease future research in instance-level recognition. Code
has been made available at: https://github.com/
facebookresearch/Detectron.

1. Introduction
The vision community has rapidly improved object de-

tection and semantic segmentation results over a short pe-
riod of time. In large part, these advances have been driven
by powerful baseline systems, such as the Fast/Faster R-
CNN [12, 36] and Fully Convolutional Network (FCN) [30]
frameworks for object detection and semantic segmenta-
tion, respectively. These methods are conceptually intuitive
and offer flexibility and robustness, together with fast train-
ing and inference time. Our goal in this work is to develop a
comparably enabling framework for instance segmentation.

Instance segmentation is challenging because it requires
the correct detection of all objects in an image while also
precisely segmenting each instance. It therefore combines
elements from the classical computer vision tasks of ob-
ject detection, where the goal is to classify individual ob-
jects and localize each using a bounding box, and semantic

RoIAlignRoIAlign

class
box

convconv convconv

Figure 1. The Mask R-CNN framework for instance segmentation.

segmentation, where the goal is to classify each pixel into
a fixed set of categories without differentiating object in-
stances.1 Given this, one might expect a complex method
is required to achieve good results. However, we show that
a surprisingly simple, flexible, and fast system can surpass
prior state-of-the-art instance segmentation results.

Our method, called Mask R-CNN, extends Faster R-CNN
[36] by adding a branch for predicting segmentation masks
on each Region of Interest (RoI), in parallel with the ex-
isting branch for classification and bounding box regres-
sion (Figure 1). The mask branch is a small FCN applied
to each RoI, predicting a segmentation mask in a pixel-to-
pixel manner. Mask R-CNN is simple to implement and
train given the Faster R-CNN framework, which facilitates
a wide range of flexible architecture designs. Additionally,
the mask branch only adds a small computational overhead,
enabling a fast system and rapid experimentation.

In principle Mask R-CNN is an intuitive extension of
Faster R-CNN, yet constructing the mask branch properly
is critical for good results. Most importantly, Faster R-
CNN was not designed for pixel-to-pixel alignment be-
tween network inputs and outputs. This is most evident in
how RoIPool [18, 12], the de facto core operation for at-
tending to instances, performs coarse spatial quantization
for feature extraction. To fix the misalignment, we pro-
pose a simple, quantization-free layer, called RoIAlign, that
faithfully preserves exact spatial locations. Despite being

1Following common terminology, we use object detection to denote
detection via bounding boxes, not masks, and semantic segmentation to
denote per-pixel classification without differentiating instances. Yet we
note that instance segmentation is both semantic and a form of detection.
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Notes

Instance segmentation aims at not only classifying
the individual pixels in the image but also the
instance of the class when the same object is
present multiple times, e.g. “car #1”, “car #2”.
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Figure 5. More results of Mask R-CNN on COCO test images, using ResNet-101-FPN and running at 5 fps, with 35.7 mask AP (Table 1).

backbone AP AP50 AP75 APS APM APL

MNC [10] ResNet-101-C4 24.6 44.3 24.8 4.7 25.9 43.6
FCIS [26] +OHEM ResNet-101-C5-dilated 29.2 49.5 - 7.1 31.3 50.0
FCIS+++ [26] +OHEM ResNet-101-C5-dilated 33.6 54.5 - - - -
Mask R-CNN ResNet-101-C4 33.1 54.9 34.8 12.1 35.6 51.1
Mask R-CNN ResNet-101-FPN 35.7 58.0 37.8 15.5 38.1 52.4
Mask R-CNN ResNeXt-101-FPN 37.1 60.0 39.4 16.9 39.9 53.5

Table 1. Instance segmentation mask AP on COCO test-dev. MNC [10] and FCIS [26] are the winners of the COCO 2015 and 2016
segmentation challenges, respectively. Without bells and whistles, Mask R-CNN outperforms the more complex FCIS+++, which includes
multi-scale train/test, horizontal flip test, and OHEM [38]. All entries are single-model results.

can predict K masks per RoI, but we only use the k-th mask,
where k is the predicted class by the classification branch.
The m×m floating-number mask output is then resized to
the RoI size, and binarized at a threshold of 0.5.

Note that since we only compute masks on the top 100
detection boxes, Mask R-CNN adds a small overhead to its
Faster R-CNN counterpart (e.g., ∼20% on typical models).

4. Experiments: Instance Segmentation
We perform a thorough comparison of Mask R-CNN to

the state of the art along with comprehensive ablations on
the COCO dataset [28]. We report the standard COCO met-
rics including AP (averaged over IoU thresholds), AP50,
AP75, and APS , APM , APL (AP at different scales). Un-
less noted, AP is evaluating using mask IoU. As in previous
work [5, 27], we train using the union of 80k train images
and a 35k subset of val images (trainval35k), and re-
port ablations on the remaining 5k val images (minival).
We also report results on test-dev [28].

4.1. Main Results

We compare Mask R-CNN to the state-of-the-art meth-
ods in instance segmentation in Table 1. All instantia-
tions of our model outperform baseline variants of pre-
vious state-of-the-art models. This includes MNC [10]
and FCIS [26], the winners of the COCO 2015 and 2016
segmentation challenges, respectively. Without bells and
whistles, Mask R-CNN with ResNet-101-FPN backbone
outperforms FCIS+++ [26], which includes multi-scale
train/test, horizontal flip test, and online hard example min-
ing (OHEM) [38]. While outside the scope of this work, we
expect many such improvements to be applicable to ours.

Mask R-CNN outputs are visualized in Figures 2 and 5.
Mask R-CNN achieves good results even under challeng-
ing conditions. In Figure 6 we compare our Mask R-CNN
baseline and FCIS+++ [26]. FCIS+++ exhibits systematic
artifacts on overlapping instances, suggesting that it is chal-
lenged by the fundamental difficulty of instance segmenta-
tion. Mask R-CNN shows no such artifacts.

5

(He et al., 2017)
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It is noteworthy that for detection and semantic segmentation, there is an heavy re-use
of large networks trained for classification.

The models themselves, as much as the source code of the algorithm that produced
them, or the training data, are generic and re-usable assets.
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