Coming back to generating a signal, instead of training an autoencoder and modeling the distribution of Z, we can try an alternative approach:

Impose a distribution for Z and then train a decoder g so that $g(Z)$ matches the training data.
We consider the following two distributions:

- p is the distribution on $\mathcal{X} \times \mathbb{R}^d$ of a pair (X, Z) composed of an encoding state $Z \sim \mathcal{N}(0, I)$ and the output of the decoder g on it.

- q is the distribution on $\mathcal{X} \times \mathbb{R}^d$ of a pair (X, Z) composed of a sample X taken from the data distribution and the output of the encoder on it.

Our goal is that $p(X)$ mimics the data-distribution $q(X)$, that is to find g that maximizes the log-likelihood

$$\frac{1}{N} \sum_n \log p(x_n) = \mathbb{E}_{q(X)} \left[\log p(X) \right].$$

However, with a complicated g, we can sample z and compute $g(z)$, but cannot compute $p(x)$ for a given x, and even less compute its derivatives.

The Variational Autoencoder proposed by Kingma and Welling (2013) relies on a tractable approximation of this log-likelihood.

Note that their framework involves stochastic encoder f, and decoder g, whose outputs depend on both their inputs and additional randomness.
Remember that $q(X)$ is the data distribution, and $q(Z \mid X = x)$ is the distribution of the latent encoding $f(x)$. We want to maximize

$$E_{q(X)} \left[\log p(X) \right],$$

and we can show that

$$-E_{q(X)} \left[\log p(X) \right] \leq E_{q(X)} \left[D_{KL}(q(Z \mid X) \parallel p(Z)) \right] - E_{q(X,Z)} \left[\log p(X \mid Z) \right].$$

So it makes sense to minimize this latter quantity.

So the final loss is

$$\mathcal{L} = E_{q(X)} \left[D_{KL}(q(Z \mid X) \parallel p(Z)) \right] - E_{q(X,Z)} \left[\log p(X \mid Z) \right].$$

with

• $q(X)$ is the data distribution
• $p(Z) = \mathcal{N}(0, I)$.

Kingma and Welling propose that both the encoder f and decoder g map to a Gaussian with diagonal covariance. Hence they map to twice the dimension (e.g. $f(x) = (\mu^f(x), \sigma^f(x)))$ and

• $q(Z \mid X = x) \sim \mathcal{N}(\mu^f(x), \text{diag}(\sigma^f(x)))$
• $p(X \mid Z = z) \sim \mathcal{N}(\mu^g(z), \text{diag}(\sigma^g(z)))$.
The first term of \mathcal{L} is the average of

$$D_{KL}\left(q(Z \mid X = x) \parallel p(Z) \right) = -\frac{1}{2} \sum_d \left(1 + 2 \log \sigma_d^f(x) - \left(\mu_d^f(x) \right)^2 - \left(\sigma_d^f(x) \right)^2 \right).$$

ever the x_ns.

This can be implemented as

```python
param_f = model.encode(input)
mu_f, logvar_f = param_f.split(param_f.size(1)//2, 1)
kl = - 0.5 * (1 + logvar_f - mu_f.pow(2) - logvar_f.exp())
kl_loss = kl.sum() / input.size(0)
```
As Kingma and Welling (2013), we use a constant variance of 1 for the decoder, so the second term of \mathcal{L} becomes the average of

$$
- \log p(X = x \mid Z = z) = \frac{1}{2} \sum_d (x_d - \mu_d^g(z))^2 + \text{cst}
$$

over the x_n, with one z_n sampled for each, i.e.

$$
z_n \sim \mathcal{N}\left(\mu^f(x_n), \sigma^f(x_n)\right), \ n = 1, \ldots, N.
$$

This can be implemented as

```python
std_f = torch.exp(0.5 * logvar_f)
z = torch.empty_like(mu_f).normal_() * std_f + mu_f
output = model.decode(z)
fit = 0.5 * (output - input).pow(2)
fit_loss = fit.sum() / input.size(0)
```
We had for the standard autoencoder

```
z = model.encode(input)
output = model.decode(z)
loss = 0.5 * (output - input).pow(2).sum() / input.size(0)
```

and putting everything together we get for the VAE

```
param_f = model.encode(input)
mu_f, logvar_f = param_f.split(param_f.size(1)//2, 1)
kl = - 0.5 * (1 + logvar_f - mu_f.pow(2) - logvar_f.exp())
kl_loss = kl.sum() / input.size(0)
std_f = torch.exp(0.5 * logvar_f)
z = torch.empty_like(mu_f).normal_() * std_f + mu_f
output = model.decode(z)
fit = 0.5 * (output - input).pow(2)
fit_loss = fit.sum() / input.size(0)
loss = kl_loss + fit_loss
```

During inference we do not sample, and instead use μ_f and μ_g as prediction.

Note in particular the **re-parameterization trick:**

```
z = torch.empty_like(mu_f).normal_() * std_f + mu_f
output = model.decode(z)
```

Implementing the sampling of z that way allows to compute the gradient w.r.t f's parameters without any particular property of `normal_()`.
We can look at two latent features to check that they are Normal for the VAE.
Autoencoder sampling ($d = 32$)

Variational Autoencoder sampling ($d = 32$)

Making the embedding $\sim \mathcal{N}(0, 1)$, often results in “disentangled” representations.

This effect can be reinforced with a greater weight of the KL term

$$\mathcal{L} = \beta \mathbb{E}_{q(X)} \left[\mathbb{D}_{KL}(q(Z \mid X) \parallel p(Z)) \right] - \mathbb{E}_{q(X, Z)} \left[\log p(X \mid Z) \right],$$

resulting in the β-VAE proposed by Higgins et al. (2017).
We propose augmenting the original VAE framework with a single hyperparameter β with permission. All models apart from VAE learnt to disentangle the labelled data generative factor, azimuth (a). (a), emotion (b) and hair style (c), whereas VAE learnt an entangled representation (e.g. azimuth is β that are independent. We show that this simple modification allows β-VAE to significantly improve disentanglement performance against both the best unsupervised (InfoGAN: Goodfellow et al., 2014) framework to additionally maximise the mutual information between a subset of the generating noise variables and the output of a recognition network. It has been reported $\beta > 1$ corresponds to the original VAE framework (Kingma & Welling, 2014; Rezende et al., 2014). Furthermore, we show that learning disentangled representations of independent visual data generative factors; 2) we devise a protocol to quantitatively compare the degree of disentanglement learnt by different models; 3) we demonstrate both qualitatively and quantitatively that our β-VAE approach achieves state-of-the-art disentangling performance against both the best unsupervised (InfoGAN: Chen et al., 2016) and faces (Paysan et al., 2009) using qualitative evaluation. Finally, to help quantify disentanglement performance compared to various baselines on a variety of complex datasets. The reliance of InfoGAN on the GAN framework, however, comes in this paper we attempt to address these issues. We propose β-VAE, VAE and DC-IGN where $\beta = 1$ corresponds to the original VAE framework (Kingma & Welling, 2014; Rezende et al., 2014), which brings scalability and training inference network (although the recognition network can be used as one). The ability to infer the distribution and the number of the regularised noise variables. InfoGAN also lacks a principled approach to disentangled factor learning on a number of benchmark datasets, such as CelebA (Liu et al., 2015), chairs (Aubry et al., 2012; Tang et al., 2013; Cohen & Welling, 2014; 2015). 2) We show that this simple modification allows β-VAE significantly outperforms all our baselines on this measure (ICA, PCA, VAE Kingma & Ba (2014), DC-IGN: Kulkarni et al., 2015), prompting the development of more elaborate semi-supervised VAE-based approaches for disentangled factor learning on simple datasets, such as FreyFaces or MNIST (Kingma & Welling, 2014), disentangling perfor-
References
