Deep learning

7.4. Variational Autoencoder

Francois Fleuret

https://fleuret.org/dlc/

UNIVERSITE
DE GENEVE

https://fleuret.org/dlc/

Coming back to generating a signal, instead of training an autoencoder and
modeling the distribution of Z, we can try an alternative approach:

Impose a distribution for Z and then train a decoder g so that g(Z) matches
the training data.

This can be done with a Variational Autoencoder (Kingma and Welling, 2013).

Francois Fleuret Deep learning / 7.4. Variational Autoencoder 1/24

Notes

We saw in lecture 7.2. “Deep Autoencoders”
that autoencoders can, to some extent, model
the data distribution by first mapping the data
to a smaller dimension latent space, and then
fitting a density model.

As seen with the experiments on MNIST, this is
not satisfying because,

e cither the latent space is of very small
dimension, in which case it makes sense to
use a parameterized density model over the
latent representation, but the input signal
is not modeled properly, or

e the latent space is of higher dimension, in
which case it becomes harder to properly
model the latent representation.

We want to train a model p(X = x | Z = z; w) such that, with p(Z = z) fixed, for
instance to //(0, /), the marginal

p(X:x;W):/p(X:X|Z:z;w)p(Z:z)dz

match the training data, hence maximizes

Z log p(X = xn; w).
n
This value is sometimes referred to as the (log of the) model evidence.
Frangois Fleuret

Deep learning / 7.4. Variational Autoencoder 2/ 24

The model for p(X = x | Z = z) plays the role of a decoder: Given the latent
representation z, it estimates the signal x.

A form that echoes Gaussian mixture models, is to take
p(X | Z = ziw) = I (4 (z; w), ding (% (z; w))).

where 18 and o€ are of same shape as X and are computed by a deep model g.

Francois Fleuret Deep learning / 7.4. Variational Autoencoder 3/24

The key technical issue is that there is no tractable form for the marginalized quantity
p(X = x; w).

What we can do is to estimate it by sampling. Indeed, with any distribution g(Z), we
have

p(X:X):/p(X:X,Z:Z;W)dz
:/p(X:X,Z:Z;W)
q(Z = 2)

_E {P(XZXJ:Z;W)
AL a(Z = z)

q(Z = z)dz

Hence, if we sample one z ~ q(Z), the quantity

p(X =x,Z =z;w)
q(Z = 2)

is an unbiased estimator of p(X = x; w).

Francois Fleuret Deep learning / 7.4. Variational Autoencoder 4 /24

However we want to maximize the fit to the training set, which corresponds to
maximizing the likelihood of the training data

Z log p(X = xp).

Due to the convexity of the log, the log of our unbiased estimator of p(X = x; w) is
not an unbiased estimator of log p(X = x; w).

Francois Fleuret Deep learning / 7.4. Variational Autoencoder 5/24

We can look at that more precisely:

X=x,Z=z,w
By oz) {log p()}

q(Z = 2)
p(Z=2z| X =x;w)p(X = x; W)}
q(Z = z)
p(Z:Z|X:X;W):|
q(Z = 2)
= log p(X = x;w) — Dk (q(2) | p(Z | X = x; w)).

= Ezwq(Z) |:|Og

=logp(X =x;w) + E, 42 {Iog

Where

Dki(al| b) = /a(u) log ZEZ; du = —/a(u) log :EZ; du

is the Kullback-Leibler divergence.

This quantity is non-negative, hence the expectation of the log of our estimator is a
lower bound of log p(X = x; w), called the Evidence Lower Bound (ELBO).

Francois Fleuret Deep learning / 7.4. Variational Autoencoder 6 /24

Hence, to have the model fit the data when we optimize the ELBO, we need a g(Z2)
that makes Dy (g(Z) || p(Z | X = x; w)) as small as possible.

All the derivations remain valid if g is a function of X. The quantity we want to
maximize is then

log p(X = x;w) — Dk (q(Z | X =x;w') || p(Z | X = x; w))

and maximizing it will both maximize log p(X = x; w), and minimize the KL term,
hence will bring q(Z | X = x; w’) close to p(Z | X = x; w).

The role of g(Z | X = x; w’) is very similar to that of an encoder: Given the signal x, it
estimates what z are consistent with the decoding.

We can again use a Gaussian whose parameters are computed by a deep model f

a(Z | X =x;w') ~ # (4 (x; w'), diag(a” (x; w))).

Francois Fleuret Deep learning / 7.4. Variational Autoencoder 7/24

One last technical point is that we can rewrite the ELBO as

p(X:x,Z:z;W)}
q(Z =z | X =x;w)
P = x| 2= 1wz =)
q(Z =z | X =x;w')

]EZNq(Z|X:X;W/) |:|Og

= Ez~q(Z|X:x;W’) |:|0g
q(Z=z| X =x;w)

p(Z = 2)
=]EZNq(Z|X:X;W/) [Iog p(X =X | Z =z W)] — Dki (q(Z | X =x; W/) H p(Z)) :

= EZNq(Z|X:x;W’) |:|Og P(X =X | Z = z; W) — |og

This form allows to take advantage of the closed-form expression of the KL divergence
between Gaussians to get a less noisy estimate:

Dy (M (g1, 1), A (12, X2))
1 p1

-
=~ llog =2 — D - > (g — Tr(Z:'%.) .
3 [log [= D+ (i —) By s —)+ T (55754 |

Francois Fleuret Deep learning / 7.4. Variational Autoencoder 8 /24

So the final loss is

P(w,w') = % > D (a(Z | X =xn;w') | p(2)) — log p(X = xn | Z = zn; W)

where Vn, z, ~ q(Z | X = xn; w').

Francois Fleuret Deep learning / 7.4. Variational Autoencoder 9/24

Minimizing the first term

DL (9(Z | X = xn; w') || p(2))

brings q(Z | X = xn; w’) close to p(Z) = #(0,1).

s
@

Latent space #

7

Original space &

Francois Fleuret Deep learning / 7.4. Variational Autoencoder 10 / 24

Minimizing the second term for a z, ~ q(Z | X = xu; w')

—logp(X =xn | Z = zn; w)

maximizes the likelihood of the original data point x, under p(X | Z = z,; w).

&>

—

~_ 0

Original space &

Latent space #

Francois Fleuret Deep learning / 7.4. Variational Autoencoder 11 /24

The assumption of independence between the component of P(X | Z = z) allows the
model to overfit the variance and additionally leads to grainy samples.

We fix this by forcing a variance of 1 during training and 0 during sampling.

Francois Fleuret Deep learning / 7.4. Variational Autoencoder 12 /24

class VariationalAutoEncoder (nn.Module) :

def __init__(self, nb_channels, latent_dim):
super() .__init__Q)

self.encoder = nn.Sequential(
nn.Conv2d (1, nb_channels, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv2d (nb_channels, nb_channels, kernel_size=5),
nn.ReLU(inplace=True),
nn.Conv2d(nb_channels, nb_channels, kernel_size=5),
nn.ReLU(inplace=True),
nn.Conv2d(nb_channels, nb_channels, kernel_size=4, stride=2),
nn.ReLU(inplace=True),
nn.Conv2d(nb_channels, nb_channels, kernel_size=3, stride=2),
nn.ReLU(inplace=True),
nn.Conv2d(nb_channels, 2 * latent_dim, kernel_size=4),

self.decoder = nn.Sequential(
nn.ConvTranspose2d(latent_dim, nb_channels, kernel_size=4),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(nb_channels, nb_channels, kernel_size=3, stride=2),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(nb_channels, nb_channels, kernel_size=4, stride=2),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(nb_channels, nb_channels, kernel_size=5),
nn.ReLU(inplace=True),
nn.ConvIranspose2d(nb_channels, 1, kernel_size=5),

Frangois Fleuret Deep learning / 7.4. Variational Autoencoder 13 /24

def encode(self, x):
output = self.encoder(x).view(x.size(0), 2, -1)
mu, log_var = output[:, 0], output[:, 1]
return mu, log_var

def decode(self, z):

mu = self.decoder(z.view(z.size(0), -1, 1, 1))
return mu, mu.new_zeros(mu.size())

Frangois Fleuret Deep learning / 7.4. Variational Autoencoder 14 / 24

def sample_gaussian(param):
mean, log_var = param
std = log_var.mul(0.5).exp()
return torch.randn(mean.size(), device=mean.device) * std + mean

def log_p_gaussian(x, param):
mean, log_var, x = param[0].flatten(l), param[1].flatten(1), x.flatten(1)
var = log_var.exp()
return -0.5 * (((x - mean).pow(2) / var) + log_var + math.log(2 * math.pi)).sum(1)

def dkl_gaussians(param_a, param_b):
mean_a, log_var_a = param_al[0].flatten(1l), param_a[1l].flatten(1l)
mean_b, log_var_b = param_b[0].flatten(1l), param_b[1].flatten(1)
var_a = log_var_a.exp()
var_b = log_var_b.exp()
return 0.5 * (
log_var_b - log_var_a - 1 + (mean_a - mean_b).pow(2) / var_b + var_a / var_b
) .sum(1)

Frangois Fleuret Deep learning / 7.4. Variational Autoencoder 15 / 24

Note in particular the re-parameterization trick:

def sample_gaussian(param):
mean, log_var = param
std = log_var.mul(0.5).exp()
return torch.randn(mean.size(), device=mean.device) * std + mean

Implementing the sampling of z that way allows to compute the gradient w.r.t the
density's parameters without any particular property of randn().

Francois Fleuret Deep learning / 7.4. Variational Autoencoder 16 / 24

for x in train_input.split(args.batch_size):
param_q_Z_given_x = model.encode(x)
z = sample_gaussian(param_q_Z_given_x)
param_p_X_given_z = model.decode(z)
log_p_x_given_z = log_p_gaussian(x, param_p_X_given_z)

dkl_q_Z_given_x_from_p_Z = dkl_gaussians(param_q_Z_given_x, param_p_Z)
loss = -(log_p_x_given_z - dkl_q_Z_given_x_from_p_Z) .mean()

optimizer.zero_grad()

loss.backward()
optimizer.step()

Frangois Fleuret Deep learning / 7.4. Variational Autoencoder 17 / 24

parser.add_argument ("--nb_epochs", type=int, default=25)
parser.add_argument ("--learning_rate", type=float, default=1e-3)
parser.add_argument ("--batch_size", type=int, default=100)
parser.add_argument ("--latent_dim", type=int, default=32)

parser.add_argument ("--nb_channels", type=int, default=32)

Frangois Fleuret Deep learning / 7.4. Variational Autoencoder 18 / 24

Frangois Fleuret

Autoencoder reconstruction (d = 32)

Oyl 4Yas 20
597¥%4 9260
740\ 3\ 347

Variational Autoencoder reconstruction (d = 32)

1049 L X8 7
159785256
714013 \V3%4

Deep learning / 7.4. Variational Autoencoder

'—""'--.|I

o
5
2
r & O b
0 b &
4 O 7 2

Notes

The images at the top are original test MNIST
samples. The images in the middle are the recon-
structed samples with the standard autoencoder
as seen in lecture 7.2. “Deep Autoencoders”.
The images at the bottom are the reconstructed
samples obtained with the variational autoen-
coder.

The results are not as good as with the standard
autoencoder, which is not surprising since there
is an additional constraint on the distribution in
the latent space.

19 / 24

We can look at two latent features to check that they are Normal for the VAE.

Autoencoder

Variational autoencoder 4(0,1)

Frangois Fleuret Deep learning / 7.4. Variational Autoencoder

Notes

The first scatter plot on the top-left shows the
empirical distribution of two latent dimensions
when the encoder is from the standard autoen-
coder. The plot was generated by choosing at
random two dimensions among the 32 ones of
the latent space, encode 1000 MNIST samples,
and draw a point at the two resulting coordinates.
We can see that this is not a normal distribution.
If the same process is done with the variational
autoencoder we get the scatter plot at the bottom
left, that we can compare with a similar scatter
plot obtained by sampling independent normal
coordinates, shown at the bottom right.

The variational autoencoder did its job of making
the embedded representation follow a Gaussian
distribution.

20 / 24

Autoencoder sampling (d = 32)

A R)
- e

Francois Fleuret Deep learning / 7.4. Variational Autoencoder 21 / 24

Notes

We can compare the result of sampling data
points in the latent space and map them back
in the original space with the decoder. To that
purpose, we first generate a random Gaussian
vector of dimension equal to that of the latent
space, d = 32, and then we run the decoder on
that random sample, which produces an image
in the original space.

The images on the top are obtained with the
decoder from the standard autoencoder, and the
images on the bottom are for the variational
autoencoder. Although these small-scale experi-
ments are far from the state of the art, the latter
samples are more realistic.

Making the embedding ~ .//(0, 1), often results in “disentangled” representations.

This effect can be reinforced with a greater weight of the KL term
1
5 2 BDL(a(Z | X =xniw') || p(2)) = log p(X = xn | Z = zp; w)

resulting in the 3-VAE proposed by Higgins et al. (2017).

Frangois Fleuret Deep learning / 7.4. Variational Autoencoder

22 /24

Frangois Fleuret

(c) leg style (b) width (a) azimuth

3-VAE VAE
LREAGII TN NNY
LERRA TN
WRERRR BAAAAA
' FEPIP I FPEED
.----- Ll 1 1 3 B 3

BEENYY deseun
AAIIII Jaanes

mEmeemwee -("(ﬂ""

Deep learning / 7.4. Variational Autoencoder

(Higgins et al., 2017)

23 /24

=
=
Q
=
©
8
o
2
=
<
r=
=}
E
N
<<
=
©
)

(b) emotion (smile)

(c) hair (fringe)

(Higgins et al., 2017)

Frangois Fleuret Deep learning / 7.4. Variational Autoencoder 24 / 24

References

I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Lerchner.
beta-vae: Learning basic visual concepts with a constrained variational framework. In
International Conference on Learning Representations (ICLR), 2017.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. CoRR, abs/1312.6114, 2013.

	References

