Coming back to generating a signal, instead of training an autoencoder and modeling the distribution of Z, we can try an alternative approach:

Impose a distribution for Z and then train a decoder g so that $g(Z)$ matches the training data.
We consider the following two distributions:

- p is the distribution on $\mathcal{X} \times \mathbb{R}^d$ of a pair (X, Z) composed of an encoding state $Z \sim \mathcal{N}(0, I)$ and the output of the decoder g on it.

- q is the distribution on $\mathcal{X} \times \mathbb{R}^d$ of a pair (X, Z) composed of a sample X taken from the data distribution and the output of the encoder on it.

Our goal is that $p(X)$ mimics the data-distribution $q(X)$, that is to find g that maximizes the log-likelihood

$$\frac{1}{N} \sum_n \log p(x_n) = \hat{E}_q(X) \left[\log p(X) \right].$$

However, with a complicated g, we can sample z and compute $g(z)$, but cannot compute $p(x)$ for a given x, and even less compute its derivatives.

The Variational Autoencoder proposed by Kingma and Welling (2013) relies on a tractable approximation of this log-likelihood.

Note that their framework involves stochastic encoder f, and decoder g, whose outputs depend on both their inputs and additional randomness.
Remember that \(q(X) \) is the data distribution, and \(q(Z \mid X = x) \) is the distribution of the latent encoding \(f(x) \). We want to maximize

\[
\mathbb{E}_{q(X)} \left[\log p(X) \right],
\]

and we can show that

\[
- \mathbb{E}_{q(X)} \left[\log p(X) \right] \leq \mathbb{E}_{q(X)} \left[D_{KL}(q(Z \mid X) \parallel p(Z)) \right] - \mathbb{E}_{q(X,Z)} \left[\log p(X \mid Z) \right].
\]

So it makes sense to minimize this latter quantity.

So the final loss is

\[
\mathcal{L} = \mathbb{E}_{q(X)} \left[D_{KL}(q(Z \mid X) \parallel p(Z)) \right] - \mathbb{E}_{q(X,Z)} \left[\log p(X \mid Z) \right].
\]

with

- \(q(X) \) is the data distribution
- \(p(Z) = \mathcal{N}(0, I) \).

Kingma and Welling propose that both the encoder \(f \) and decoder \(g \) map to a Gaussian with diagonal covariance. Hence they map to twice the dimension (e.g. \(f(x) = (\mu_f(x), \sigma_f(x)) \)) and

- \(q(Z \mid X = x) \sim \mathcal{N}(\mu_f(x), \text{diag}(\sigma_f(x))) \)
- \(p(X \mid Z = z) \sim \mathcal{N}(\mu_g(z), \text{diag}(\sigma_g(z))) \).
The first term of \mathcal{L} is the average of

$$
D_{KL} \left(q(Z \mid X = x) \parallel p(Z) \right) = -\frac{1}{2} \sum d \left(1 + 2 \log \sigma_f^d(x) - \left(\mu_f^d(x) \right)^2 - \left(\sigma_f^d(x) \right)^2 \right).
$$

over the x_ns.

This can be implemented as

```python
param_f = model.encode(input)
mu_f, logvar_f = param_f.split(param_f.size(1)//2, 1)
kl = - 0.5 * (1 + logvar_f - mu_f.pow(2) - logvar_f.exp())
kl_loss = kl.sum() / input.size(0)
```
As Kingma and Welling (2013), we use a constant variance of 1 for the decoder, so the second term of \mathcal{L} becomes the average of

$$-\log p(X = x \mid Z = z) = \frac{1}{2} \sum_d (x_d - \mu^g_d(z))^2 + \text{cst}$$

over the x_n, with one z_n sampled for each, i.e.

$$z_n \sim \mathcal{N} \left(\mu^f(x_n), \sigma^f(x_n) \right), \ n = 1, \ldots, N.$$

This can be implemented as

```python
std_f = torch.exp(0.5 * logvar_f)
z = torch.empty_like(mu_f).normal_() * std_f + mu_f
output = model.decode(z)
fit = 0.5 * (output - input).pow(2)
fit_loss = fit.sum() / input.size(0)
```
We had for the standard autoencoder

```
z = model.encode(input)
output = model.decode(z)
loss = 0.5 * (output - input).pow(2).sum() / input.size(0)
```

and putting everything together we get for the VAE

```
param_f = model.encode(input)
mu_f, logvar_f = param_f.split(param_f.size(1)//2, 1)
kl = - 0.5 * (1 + logvar_f - mu_f.pow(2) - logvar_f.exp())
kl_loss = kl.sum() / input.size(0)
std_f = torch.exp(0.5 * logvar_f)
z = torch.empty_like(mu_f).normal_() * std_f + mu_f
output = model.decode(z)

fit = 0.5 * (output - input).pow(2)
fit_loss = fit.sum() / input.size(0)
loss = kl_loss + fit_loss
```

During inference we do not sample, and instead use μ^f and μ^g as prediction.

Note in particular the re-parameterization trick:

```
z = torch.empty_like(mu_f).normal_() * std_f + mu_f
output = model.decode(z)
```

Implementing the sampling of z that way allows to compute the gradient w.r.t f’s parameters without any particular property of `normal_()`.
We can look at two latent features to check that they are Normal for the VAE.
Autoencoder sampling ($d = 32$)

Variational Autoencoder sampling ($d = 32$)

Making the embedding $\sim \mathcal{N}(0,1)$, often results in “disentangled” representations.

This effect can be reinforced with a greater weight of the KL term

$$\mathcal{L} = \beta \mathbb{E}_{q(X)} \left[\text{KL} (q(Z | X) \| p(Z)) \right] - \mathbb{E}_{q(X,Z)} \left[\log p(X | Z) \right],$$

resulting in the β-VAE proposed by Higgins et al. (2017).
We propose augmenting the original VAE framework with a single hyperparameter \(\beta \) with permission. (b). Only \(\beta = 1 \) achieves state of the art disentangling performance against both the best unsupervised (InfoGAN: Goodfellow et al., 2014) framework to additionally maximise the mutual information between a categorical latent variables. Only \(\beta = 1 \) also lacks a principled way of measuring the degree of disentanglement achieved by different models or when optimising the hyperparameters of a single model.

Our main contributions are the following: 1) we propose \(\text{\(\beta \)-VAE} \) approach achieves state-of-the-art disentanglement performance compared to various baselines on a variety of complex datasets. 2) we devise a new measure of disentanglement and show that \(\text{\(\beta \)-VAE} \) learns an entangled representation (e.g. chair width is entangled with azimuth and leg style (b)). InfoGAN traversal is over ten dimensional \([-1, 1]\) range. VAE always performs worse than \(\text{\(\beta \)-VAE} \) (Higgins et al., 2017), prompting the development of more elaborate semi-supervised VAE-based approaches for disentangled representation of these factors. The reliance of InfoGAN on the GAN framework, however, comes with several drawbacks: 1) it only learns disentangled representations of independent visual data generative factors; 2) we devise a measure of disentanglement in learnt latent representations compared to the unmodified VAE framework (Kingma & Welling, 2014; Rezende et al., 2014). Furthermore, we show that \(\text{\(\beta \)-VAE} \) framework (Kingma & Welling, 2014; Rezende et al., 2014) and faces (Paysan et al., 2009) using qualitative evaluation. Finally, to help quantify the differences, we develop a new measure of disentanglement and show that \(\text{\(\beta \)-VAE} \) outperforms all our baselines on this measure (ICA, PCA, VAE Kingma & Ba (2014), DC-IGN Kulkarni et al., 2015), and InfoGAN (Chen et al., 2016)).

\(\text{\(\beta \)-VAE} \) learns the correct disentangled representation (c) leg style. InfoGAN traversal is over ten dimensional \([-1, 1]\) range. VAE always performs worse than \(\text{\(\beta \)-VAE} \) (Higgins et al., 2017).
References
