Deep learning

7.3. Denoising autoencoders

Francois Fleuret

https://fleuret.org/dlc/

UNIVERSITE
DE GENEVE

https://fleuret.org/dlc/

Beside dimension reduction, autoencoders can capture dependencies between
signal components to restore a degraded input.

In that case, we can ignore the encoder/decoder structure, and such a model
¢: X —>X.

is referred to as a denoising autoencoder.

The goal is not anymore to optimize ¢ so that
(X)) ~ X
but, given a perturbation X of the signal X, to restore the signal, hence

H(X) ~ X.

Frangois Fleuret Deep learning / 7.3. Denoising autoencoders 1/38

We can illustrate this notion in 2d with an additive Gaussian noise, and the
quadratic loss, hence

N
. o1 2
w = argmin — Xn — O\ Xp + €n; W ,
gmin 5 2 lbn = 90 +-ent)|

where x, are the data samples, and ¢, are Gaussian random noise vectors.

Frangois Fleuret Deep learning / 7.3. Denoising autoencoders 2/38

model = nn.Sequential(
nn.Linear(2, 100),
nn.RelLU(Q),
nn.Linear (100, 2)

batch_size, nb_epochs = 100, 1000
optimizer = torch.optim.Adam(model.parameters(), 1lr = le-3)
mse = nn.MSELoss()

for e in range(nb_epochs):
for input in data.split(batch_size):
noise = input.new(input.size()).normal_(0, 0.1)
output = model(input + noise)
loss = mse(output, input)

optimizer.zero_grad()

loss.backward ()
optimizer.step()

Francois Fleuret Deep learning / 7.3. Denoising autoencoders 3/38

Notes

We define a MLP model that goes from R? to R®
and has 100 hidden units and the RelLU activation
function.

For each minibatch, a centered Gaussian noise
with standard deviation of 0.1 is added to the
samples.

The loss is computed between the input sample
without noise, and the output of the network on
the noisy sample.

e

2aie

7Mm

Francois Fleuret Deep learning / 7.3. Denoising autoencoders 4 /38

Notes

These pictures illustrate the denoising autoen-
coder ¢ of the previous slide on toy 2d examples.
In each figure the blue dots are the training points
sampled from px.

The arrows are drawn by iterating over the points
on a regular grid, and for every such point x not
“too far” from the training data, drawing a arrow
from x to ¢(x).

We see that the autoencoder learned to take the
points “back” to the [support of the] distribution.
Points which are already in the [support of the]
distribution, e.g. inside the rectangle, are not
moved, and the resulting arrows are very short
and barely visible.

We can do the same on MNIST, for which we keep our deep autoencoder, and ignore
its encoder/decoder structure.

corrupted_input = corruptor.corrupt(input)

output = model(corrupted_input)
loss = 0.5 * (output - input).pow(2).sum() / input.size(0)

optimizer.zero_grad()
loss.backward()
optimizer.step()

We consider three types of corruptions, that go beyond additive noise:

Original Pixel erasure Blurring Block masking

FL =t
-..;' I q

Frangois Fleuret Deep learning / 7.3. Denoising autoencoders 5/ 38

Notes

The architecture of this autoencoder trained on
MNIST is the same as in lecture 7.2. “Deep
Autoencoders”: a series of five convolution layers
which narrow the dimension to eight, and a series
of five transposed convolutions which increase
the size of the maps to the original image size.
The loss is the squared L, norm.

We consider three types of corruption:

e pixel erasure: pixels are set to white with a
certain probability,

e blurring: the input image is convolved with
a Gaussian kernel,

e block masking: a white square is drawn in
the middle of the digit.

The strength of the degradation can be modu-
lated by changing respectively

e the probability of erasing a pixel,
e the radius of the Gaussian filter,

e the size of the white patch.

£~
GoP
N QR

L D ~J
QO w
-..J-—""--..

Frangois Fleuret

-y

o

N

Deep learning / 7.3. Denoising autoencoders

Notes

The three images show:
e some examples of MNIST test samples,

e their corrupted version after erasing the
pixels with a probability p = 0.9,

e their reconstructed version by the
autoencoder.

We observe the same behavior as in the previous
course: when a sample is statistically abnormal
(e.g. a hole in the line), it is not reconstructed
properly (see first digit “0" of bottom row).
even though the corrupted digits are barely rec-
ognizable, there are not many possibilities to
reconstruct them, and the autoencoder learned
adequately how to do it.

7/ 38

Corrupted (o = 4)

L
-

Reconstructed

o4l 4879
597%476
401\ 3\ 34

N § O

&
c
2

Frangois Fleuret Deep learning / 7.3. Denoising autoencoders 9 /38

Notes

The three images show:
e some examples of MNIST test samples,

e their corrupted version after blurring the
image with a Gaussian filter of size 4
pixels,

e their reconstructed version by the
autoencoder.

We can see that blurring is accurately fixed. It
is a deterministic linear transformation, and the
model simply has to learn the inverse linear oper-
ation.

-7 ! “ fr =
Fi ' D 'l T (B A
I_' [] :r" I — f\. I.]
f » - l': ..|!'F L T
F - l'r L1 - L 1
‘v ,fl "y D Vo

Frangois Fleuret Dee

Notes

The images show:
e some examples of MNIST test samples,

e their corrupted version by placing a white
mask in the middle of the digit,

e their reconstructed version by the
autoencoder

10/38

A key weakness of this type of denoising is that the posterior

x| x

may be non-deterministic, possibly multi-modal.
If we train an autoencoder with the quadratic loss, the best reconstruction is
$(X) = E [X’f(} ,

which may be very unlikely under Px|x-

Hxx

Francois Fleuret Deep learning / 7.3. Denoising autoencoders 12 /38

Notes

In the examples of the previous slides, we could
observe some blurry parts in the reconstructed
digit which can be explained by the fact that the
distribution may be multi-modal.

We train the model to generate a deterministic
denoised image given a noisy input, and by min-
imizing the quadratic_loss during training, the
best output is E[X | X].

However, should the posterior distribution x| %

happened to be multi-modal, E[X|X] may actu-
ally be very unlikely under the posterior.

\a‘\“ ; & //

\\3\\\\%}%5‘ BN IS %44/{%///? /
N T
NN . 72
- e .
rene ;‘

g NS
///";:::vg/ \\ﬁ« NN

/=;'~ Sepb S
T

This phenomenon happens here in the area marked with the red circle. Points there can
be noisy versions of points originally in either of the two extremities of the open circle,
hence minimizing the MSE puts the denoised result in the middle of the opening, even
though the density has no mass there.

Francois Fleuret Deep learning / 7.3. Denoising autoencoders 13 /38

Py a
o o8 o)
L] ® 5o,

We can clarify this phenomenon given an X (in blue) by sampling a large number of
pairs (X, X), keeping only the Xs whose X is very close to X, resulting in a sampling of
X|X = X% (in red), whose mean E[X|X = X]| (in green) minimizes the MSE.

Francois Fleuret Deep learning / 7.3. Denoising autoencoders 14 / 38

We observe the same phenomenon with very corrupted MNIST digits.

Mods of X | X

Francois Fleuret Deep learning / 7.3. Denoising autoencoders 15 / 38

Notes

To illustrate the fact that some reconstructed
signals can be improbable under the true distri-
bution, we pick one MNIST digit of the class “7"
and degrade it by drawing a large white patch
that only keeps the bottom extremity.

Given the piece of information provided by this
X, the only two possibilities is to have either
a “7" or a “9” whose lower part would fit with
the remaining fragment. So the reconstructed
sample is actually an average under this bi-modal
distribution, and looks like a blend of the two
digits.

This can be mitigated by using in place of loss a second network that assesses if the
output is realistic.

Such methods are called adversarial since the second network aims at spotting the
mistakes of the first, and the first aims at fooling the second.

It can be combined with a stochastic denoiser that samples an X according to X | X
instead of computing a deterministic reconstruction.

We will come back to that in lecture 11.1. “Generative Adversarial Networks™ .

Francois Fleuret Deep learning / 7.3. Denoising autoencoders 16 / 38

Noise2Noise

Francois Fleuret Deep learning / 7.3. Denoising autoencoders 17 / 38

Denoising can be achieved without clean samples, if the noise is additive and unbiased.
Consider € and § two unbiased and independent noises. We have

B [l6(X + € 6) = (X +)|
= B[[I(6(X + :0) - X) = 8|7 |
=B |6(X +0) = X|[? | = 2B |67 (6(X + 0) — X) | +E[[15]?]

=B ll6(X +0) = X|? | - 2E[5] T B[6(X +€0) — X] + E[|5]]?]
- - =0

=B lp(X + :0) - X|* | + B8]

Hence

argmin E[||¢(x Fef)— (X + 5)||2] = argmin E[(X + € 0) — X]|]? } .

Using L; instead of L, estimates the median instead of the mean, and similarly is stable
to noise that keeps the median unchanged.

Francois Fleuret Deep learning / 7.3. Denoising autoencoders 18 / 38

Notes

Here:

e X is the clean signal

e c is some random unbiaised noise,

Ele] = 0,
e J is another unbiaised noise such that
E[s] = 0,

e $(X + ¢€; 0) is the response of the model
on the noisy signal with e,

e c and J are independent and unbiased.

The derivation in this slide shows that minimizing
E[l6(X +¢0) = (X + 6| |
is formally equivalent to minimizing
E[o(X + ¢ 0) — X|1*|.

Hence we can train a model with pairs of noisy
samples, if they both correspond to the same
unavailable clean samples with different additive,
unbiased, and independent noises.

Lehtinen et al. (2018)’s Noise2Noise approach uses this for image restoration, as many
existing image generative processes induce an unbiased noise.

In many image restoration tasks, the expectation of the corrupted input
data is the clean target that we seek to restore. Low-light photography
is an example: a long, noise-free exposure is the average of short,
independent, noisy exposures.

Physically accurate renderings of virtual environments are most often
generated through a process known as Monte Carlo path tracing. /.../
The Monte Carlo integrator is constructed such that the intensity of
each pixel is the expectation of the random path sampling process, i.e.,
the sampling noise is zero-mean.

(Lehtinen et al., 2018)

Francois Fleuret Deep learning / 7.3. Denoising autoencoders 19 / 38

Frangois Fleuret

NAME Noyut | FUNCTION

INPUT n

ENC_CONV0 48 Convolution 3 x 3
ENC_CONV1 48 Convolution 3 x 3

POOL1 48 Maxpool 2 x 2

ENC_CONV2 48 Convolution 3 x 3

POOL2 48 Maxpool 2 x 2

ENC_CONV3 48 Convolution 3 x 3

POOL3 48 Maxpool 2 x 2

ENC_CONV4 48 Convolution 3 x 3

POOL4 48 Maxpool 2 x 2

ENC_CONVS 48 Convolution 3 x 3

POOLS5 48 Maxpool 2 x 2

ENC_CONV6 48 Convolution 3 x 3
UPSAMPLES 48 Upsample 2 x 2

CONCAT5 96 Concatenate output of PooL4
DEC_CONVS5A 96 Convolution 3 x 3
DEC_CONV5B 96 Convolution 3 x 3
UPSAMPLE4 96 Upsample 2 x 2

CONCAT4 144 | Concatenate output of POOL3
DEC_CONV4A 96 Convolution 3 x 3
DEC_CONV4B 96 Convolution 3 x 3
UPSAMPLE3 96 Upsample 2 x 2

CONCAT3 144 | Concatenate output of POOL2
DEC_CONV3A 96 Convolution 3 x 3
DEC_CONV3B 96 Convolution 3 x 3
UPSAMPLE2 96 Upsample 2 x 2

CONCAT2 144 | Concatenate output of POOL1
DEC_CONV2A 96 Convolution 3 x 3
DEC_CONV2B 96 Convolution 3 x 3
UPSAMPLEI 96 Upsample 2 x 2

CONCATI 96+n | Concatenate INPUT
DEC_CONV1A 64 Convolution 3 x 3
DEC_CONVIB 32 Convolution 3 x 3
DEV_CONVIC m Convolution 3 x 3, linear act.

Deep learning / 7.3. Denoising autoencoders

(Lehtinen et al., 2018)

20/ 38

Input, 8 spp Lo with Z, 5 Ly with T(2),y Lo with T(2),T(§) Lupr with &,§ Lupr with T'(Z), § Reference, 32k spp
11.32dB 25.46dB 25.39dB 15.50dB 29.05dB 30.09 dB PSNR

Figure 6. Comparison of various loss functions for training a Monte Carlo denoiser with noisy target images rendered at 8 samples per
pixel (spp). In this high-dynamic range setting, our custom relative loss Lypr is clearly superior to L2. Applying a non-linear tone map to
the inputs is beneficial, while applying it to the target images skews the distribution of noise and leads to wrong, visibly too dark results.

7 !

Wp

(a) Input (64 spp), 23.93 dB (b) Noisy targets, 32.42dB (c) Clean targets, 32.95 dB (d) Reference (131k spp)

Figure 7. Denoising a Monte Carlo rendered image. (a) Image rendered with 64 samples per pixel. (b) Denoised 64 spp input, trained
using 64 spp targets. (c) Same as previous, but trained on clean targets. (d) Reference image rendered with 131 072 samples per pixel.
PSNR values refer to the images shown here, see text for averages over the entire validation set.

(Lehtinen et al., 2018)

Francois Fleuret Deep learning / 7.3. Denoising autoencoders 21 /38

Notes

On both figures: the leftmost picture is the noisy
CGl input generated with a small number of sam-
ple per pixel (8 on figure 6, and 64 on figure 7) ,
the second from the left is the denoised version
obtained with the Noise2Noise method, and the
rightmost one the reference CGI, generated with
a large number of samples per pixel (32k on fig-
ure 6, and 131k on figure 7).

Image

Spectrum

(a) Input (b) Noisy trg. (c) Clean trg. (d) Reference
18.93dB 29.77dB 29.81dB

Figure 9. MRI reconstruction example. (a) Input image with only
10% of spectrum samples retained and scaled by 1/p. (b) Recon-
struction by a network trained with noisy target images similar
to the input image. (c) Same as previous, but training done with
clean target images similar to the reference image. (d) Original,
uncorrupted image. PSNR values refer to the images shown here,
see text for averages over the entire validation set.

Frangois Fleuret Deep learning / 7.3. Denoising autoencoders

(Lehtinen et al., 2018)

22 / 38

Notes

Noise2Noise can be used for magnetic resonance
imaging reconstruction. MRI scans can be under-
sampled because this technology is very slow, and
may be difficult to obtain with dynamic subjects.

Super-resolution

Francois Fleuret Deep learning / 7.3. Denoising autoencoders 23 / 38

A special case of denoising is to increase an image resolution. We use an
encoder/decoder whose encoder’s input is smaller than the decoder's output.

Encoder

Tensor sizes / operations

1x14x14
. . 14
nn.Conv2d(1, 32, kernel_size=5, stride=1)
[eJeJeJeeTelelele[eT TT T
32x10x10 x 10
. . 10
nn.Conv2d (32, 32, kernel_size=5, stride=1) &>
[e[efefeeleT T T T
32X6X6 X6
nn.Conv2d (32, 32, kernel_size=4, stride=1) é
CLEITT]
32x3x%3 X3
. . 3
nn.Conv2d (32, 32, kernel_size=3, stride=1) “—>
OEE
32x1x1 x1
Francois Fleuret Deep learning / 7.3. Denoising autoencoders 24 / 38

Notes

Increasing the resolution of an image can be use-
ful for high resolution TV, because in many situa-
tions, the input signal is of low quality compared
to the screen resolution (old TV series, etc.)
Increasing the image with standard bilinear in-
terpolation yields extremely unpleasant artifacts.
We can instead train a deep network to learn how
to perform the up-scaling based on the content of
the signal: regenerating high-frequency patterns
when necessary, keeping the edges sharp, etc.
To illustrate how such a upsampler can be trained,
we use the MNIST dataset with input images
down-sampled by a factor 2: the input images
are of size 1 X 14 X 14 instead of 1 X 28 x 28.
The encoder reduces the size of the signal from
1 x 14 x 14 down to 32 X 1 X 1. And we then
uses a decoder to upsample the signal up to
1 x 28 x 28.

MNISTUpscaler(
(encoder) : Sequential(

(0): Conv2d(1l, 32, kernel_size=(5, 5), stride=(1, 1))
(1) : ReLU(inplace=True)
(2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1))
(3): ReLU(inplace=True)
(4): Conv2d(32, 32, kernel_size=(4, 4), stride=(1, 1))
(5): ReLU(inplace=True)
(6): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1))

)

(decoder): Sequential(
(0): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(1, 1))
(1) : ReLU(inplace=True)
(2): ConvTranspose2d(32, 32, kernel_size=(3, 3), stride=(2, 2))
(3): ReLU(inplace=True)
(4): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2))
(5): ReLU(inplace=True)
(6): ConvTranspose2d(32, 32, kernel_size=(5, 5), stride=(1, 1))
(7): ReLU(inplace=True)
(8): ConvTranspose2d(32, 1, kernel_size=(5, 5), stride=(1, 1))

)

)
Francois Fleuret Deep learning / 7.3. Denoising autoencoders
Notes

This model has a structure very similar to the au-
toencoder of lecture 7.2. “Deep Autoencoders”.

25 / 38

for original in train_input.split(batch_size):
input = F.avg_pool2d(original, kernel_size = 2)
output = model (input)
loss = (output - original).pow(2).sum() / output.size(0)

optimizer.zero_grad()

loss.backward ()
optimizer.step()

Francois Fleuret Deep learning / 7.3. Denoising autoencoders 26 / 38

Notes

The training goes exactly as usual:

e the image size is reduced by a factor of 2
with an average pooling,

e we use a quadratic loss between the output
of the autoencoder and the original full
resolution image.

Francois Fleuret Deep learning / 7.3. Denoising autoencoders 27 / 38

Notes

We show here the results of upsampling with a
standard bilinear interpolation:

o The top images are the original
1 x 28 x 28 test MNIST images,

e the middle images are the input images of
size 1 X 14 x 14,

e the bottom images are the result with the
bilinear upsampling which performs local
interpolation. We can easily spot the
blurring of such a method.

Francois Fleuret Deep learning / 7.3. Denoising autoencoders 28 / 38

Notes

We show here the results obtained with our deep
up-sampler.

o The top images are the original
1 x 28 x 28 test MNIST images,

e the middle images are the input images of
size 1 X 14 x 14,

e the bottom images are the output of the
up-sampler. The digit are sharper and
more realistic, although we can observe
some blurriness effects at the border of the
digit. This is due to the same effect as
before: the autoencoder produces the
conditional expectation and not the most
likely sample.

Lim et al. (2017) use two different resnets.

| EDSR | MDSR
Nb blocks 32 80
Channels 256 64

Nb parameters 43M 8M

Bicubic A+[27] SRCNN [4]
(21.41dB/0.4810) (22.21dB/0.5408) (22.33 dB/0.5461)

img034 from Urban100 [10] VDSR [11] SRResNet [14] EDSR+ (Ours) MDSR+ (Ours)
(22.62dB/0.5657) (23.14dB/0.5891) (23.48 dB/0.6048) (23.46 dB/0.6039)

(Lim et al., 2017)

Francois Fleuret Deep learning / 7.3. Denoising autoencoders 29 / 38

Notes

These results is an application of upsampling
autoencoders on real images where

o the "HR” image is the original high
resolution image,

e the “bicubic” is an interpolation similar to
bilinear interpolation but at a higher
degree,

e the deep learning based method are able to
produced sharper edges consistent with the
local context around pixels.

Lim et al. (2017) use two different resnets.

| EDSR | MDSR
Nb blocks 32 80
Channels 256 64

Nb parameters 43M 8M

Bicubic A+[27] SRCNN [4]
(PSNR / SSIM) (19.82dB/0.6471) (20.43dB 0.7145) (20.61 dB/0.7218)

‘.
-

e a%uti
l:‘i?'i" ﬁ

img062 from Urban100 [10] VDSR [11] SRResNet [14] EDSR+ (Ours) MDSR+ (Ours)
(20.75dB /0.7504) (21.70dB/0.8054) (22.70 dB/0.8537) (22.66 dB /0.8508)

(Lim et al., 2017)

Francois Fleuret Deep learning / 7.3. Denoising autoencoders 29 / 38

Notes

These results is an application of upsampling
autoencoders on real images where

o the "HR” image is the original high
resolution image,

e the “bicubic” is an interpolation similar to
bilinear interpolation but at a higher
degree,

e the deep learning based method are able to
produced sharper edges consistent with the
local context around pixels.

Lim et al. (2017) use two different resnets.

| EDSR | MDSR
Nb blocks 32 80
Channels 256 64
Nb parameters 43M 8M

HR Bicubic A+[27] SRCNN [4]
(PSNR / SSIM) (22.66 dB /0.8025) (23.10dB/0.8251) (23.14 dB/0.8280)

0869 from DIV2K [26] VDSR [11] SRResNet [14] EDSR+ (Ours) MDSR+ (Ours)
(23.36 dB/0.8365) (23.71dB/0.8485) (23.89dB/0.8563) (23.90 dB/0.8558)

(Lim et al., 2017)

Francois Fleuret Deep learning / 7.3. Denoising autoencoders 29 / 38

Notes

These results is an application of upsampling
autoencoders on real images where

o the "HR” image is the original high
resolution image,

e the “bicubic” is an interpolation similar to
bilinear interpolation but at a higher
degree,

e the deep learning based method are able to
produced sharper edges consistent with the
local context around pixels.

Autoencoders as self-training

Francois Fleuret Deep learning / 7.3. Denoising autoencoders 30/ 38

Vincent et al. (2010) interpret training the autoencoder as maximizing the mutual
information between the input and the latent states.

Let X be a sample, Z = f(X; 0) its latent representation, and q(x, z) the distribution of
(X, 2).

We have

argmax I(X; Z) = argmax Eqx z) [Iog q(X | Z)]
0 0

However, there is no expression of g(X | Z) in any reasonable setup.

Francois Fleuret Deep learning / 7.3. Denoising autoencoders 31/ 38

Notes

One avenue of research has been to train deep
networks by pre-training them using unlabeled
data, which can often be obtained in large quan-
tities.

The encoder f of an autoencoder seems to be
a good pre-trained model since it “discovered”
a low-dimension representation of the data the
capture its structure.

However, for any distribution p we have

Eqx,2) [Iog q(X | Z)] > Eq(x,2) [Iog p(X | Z)]

So we can in particular try to find a “good p”, so that the right term is a good
approximation of the left one.

Francois Fleuret Deep learning / 7.3. Denoising autoencoders 32 /38

If we consider the following model for p
p(-1Z=2z)=x(g(zin) o)
where g is deterministic and o fixed, we get

1

Eq(x,2)| o8 P(X | 2) | = =55 Bqux,2) [IX — g(FOX; 0:m)IIP] + k.

If optimizing n makes the bound tight, the final loss is the reconstruction error
1N
argmax I(X; Z) ~ argmin (min I Z || xn —g(f(xn;Q);n)||2> .
0 0 n =1

This abstract view of the encoder as “maximizing information” justifies its use to
build generic encoding layers.

Francois Fleuret Deep learning / 7.3. Denoising autoencoders 33 /38

Notes

The problem boils down to finding 6 such that
there exists a good decoder: if 6 is such that we
can indeed reconstruct the original signal, then
no information was lost.

Under a Gaussian model, ./ (g(z;n), o) we have

1 1X — g(z:n)]?
p(X|Z) = —— exp (— .
2702 20

hence

1
log p(X | Z) = — = | X—g(z; n)[|*+k,
202

where k = —% log 270,

In the perspective of building a good feature representation, just retaining information is
not enough, otherwise the identity would be a good choice.

In their work, Vincent et al. consider a denoising auto-encoder, which makes the model
retain information about structures beyond local noise.

Francois Fleuret Deep learning / 7.3. Denoising autoencoders 34 /38

Francois Fleuret

i 5 (D
> i)

= N
17) 20
N TN
- [B
HEEVAREANE
vi'd
EESENNENER
T N L R M A
HEUREENENE

D

N = K ENHE
BN E S SR
o R N
SN OEEN
W EE EEES
EEE B = N E
i N = REAS
E E . NEEE
B W & Il
= E = HNEE

Deep learning / 7.3. Denoising autoencoders

NENERERERE

EPEEEE
NEFEE
ESEAE
EENEE
AEENE
ERENS
N
e
A EDN
ENENA

Figure 6: Weight decay vs. Gaussian noise. We show typical filtersti&am natural image
patches in the over-complete case (200 hidden unitgft: regular autoencoder with
weight decay. We tried a wide range of weight-decay values and learates: filters
never appeared to capture a more interesting structure than what is sleoginNote
that some local blob detectors are recovered compared to using no weicgyt at all
(Figure 5 right).Right: a denoising autoencoder with additive Gaussian naise (.5)
learns Gabor-like local oriented edge detectors. Clearly the filters lagemualitatively
very different in the two cases.

(Vincent et al., 2010)

35/ 38

Francois Fleuret

EENNERNEEER

ENNEFEIEEN
HENPEAEENE
EREENENEAEN
RRAEENNRWE
REAEETEERNS
NREREAENNNA

EERE BN W

WEE o b BN
= A = EEE
BEEE A E N
NS FRON
a2 N EEE
REN B NN
LN B =l EE
& = ENEH
H = = PSS

Deep learning / 7.3. Denoising autoencoders

|

»
L

it

EEH.L
N i

ENEEEENREN N
L AWl LSS NS

S
NI

e
T

Sz
21N

F| = S
EEVERA

B B

Figure 7: Filters obtained on natural image patches by denoising aut@sagging other noise
types.Left: with 10% salt-and-pepper noise, we obtain oriented Gabor-like filtersy The
appear slightly less localized than when using Gaussian noise (contrasfigitie 6
right). Right: with 55% zero-masking noise we obtain filters that look like oriented
gratings. For the three considered noise types, denoising trainingrafipdaarn filters
that capture meaningful natural image statistics structure.

(Vincent et al., 2010)

36 / 38

Vincent et al. build deep MLPs whose layers are initialized successively as encoders
trained within a noisy autoencoder.

A final classifying layer is added and the full structure can be fine-tuned.

This approach, and others in the same spirit (Hinton et al., 2006), were seen as
strategies to complement gradient-descent for building deep nets.

Francois Fleuret Deep learning / 7.3. Denoising autoencoders 37 /38

Notes

These techniques of using autoencoders to pre-
train deep network predates more recent tech-
niques such as careful initialization and rectifiers
which made them less needed.

Frangois Fleuret

] Data Set SVMp¢ DBN-1 SAE-3 DBN-3 SDAE-3(v) \
MNIST 1.40:023 | 1.2%+021| 1.40:023 | 1.24:022 | 1.28:022(25%)
basic 3.03t015 | 3.94r017 | 3.46t016 | 3.11t015 | 2.84+0.15(10%)
rot 11.1%028 | 14.69:031 | 10.30:0.27 | 10.30c0.27 | 9.53t0.26 (25%)
bg-rand 14.58:031 | 9.80t0.26 | 11.28r028 | 6.73t0.22 | 10.30t0.27 (40%)
bg-img 22.61+037 | 16.15:0.32 | 23.00:0.37 | 16.31+-0.32 | 16.68:0.33 (25%)
bg-img-rot | 55.18t0.44 | 52.21t0.44 | 51.93t0.44 | 47.39:0.44 | 43.76:0.43 (25%)
rect 2.15:013 | 4.7%k019 | 2.41+013 | 2.60+014 | 1.99:0.12(10%)
rect-img 24.04:037 | 23.69:0.37 | 24.05-037 | 22.50:0.37 | 21.5%0.36 (25%)
convex 19.13t034 | 19.92t035 | 18.41:0.34 | 18.63:0.34 | 19.06:0.34 (10%)
tzanetakis | 14.4%218 | 18.07%4-131 | 16.15:1.95 | 18.38:1.64 | 16.02:1.04(0.05)

Deep learning / 7.3. Denoising autoencoders

(Vincent et al., 2010)

38 / 38

References

G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural
Computation, 18(7):1527-1554, July 2006.

J. Lehtinen, J. Munkberg, J. Hasselgren, S. Laine, T. Karras, M. Aittala, and T. Aila. Noise2noise:
Learning image restoration without clean data. CoRR, abs/1803.04189, 2018.

B. Lim, S. Son, H. Kim, S. Nah, and K. Lee. Enhanced deep residual networks for single image
super-resolution. CoRR, abs/1707.02921v1, 2017.

P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked denoising
autoencoders: Learning useful representations in a deep network with a local denoising
criterion. Journal of Machine Learning Research (JMLR), 11:3371-3408, 2010.

	Noise2Noise
	Super-resolution
	Autoencoders as self-training
	References

