Deep learning

6.4. Batch normalization

Francois Fleuret

https://fleuret.org/dlc/

UNIVERSITE
DE GENEVE

https://fleuret.org/dlc/

We saw that maintaining proper statistics of the activations and derivatives was
a critical issue to allow the training of deep architectures.

It was the main motivation behind Xavier's weight initialization rule.

A different approach consists of explicitly forcing the activation statistics during
the forward pass by re-normalizing them.

Batch normalization proposed by loffe and Szegedy (2015) was the first
method introducing this idea.

Francois Fleuret Deep learning / 6.4. Batch normalization 1/16

“Training Deep Neural Networks is complicated by the fact that the distribu-
tion of each layer’s inputs changes during training, as the parameters of
the previous layers change. This slows down the training by requiring lower
learning rates and careful parameter initialization /.../”

(loffe and Szegedy, 2015)

Batch normalization can be done anywhere in a deep architecture, and forces
the activations’ first and second order moments, so that the following layers do

not need to adapt to their drift.

Francois Fleuret Deep learning / 6.4. Batch normalization 2/16

Notes

The motivation for batchnorm as explained here is
that if the statistics of the activations are not con-
trolled during training, a layer will have to adapt
to the changes of the activations computed by
the previous layers in addition to making changes
to its own output to reduce the loss.

During training batch normalization shifts and rescales according to the mean and
variance estimated on the batch.

Processing a batch jointly is unusual. Operations used in deep models
can virtually always be formalized per-sample.

During test, it simply shifts and rescales according to the empirical moments estimated
during training.

Frangois Fleuret Deep learning / 6.4. Batch normalization 3/16

Frangois Fleuret

If x, € RP,b=1,..., B are the samples in the batch, we first compute the empirical

per-component mean and variance on the batch

1
Mpatch = E E Xp

1 B
N B A 2
Vbatch = E E (Xb - mbatch)
b=1

from which we compute normalized z, € RP, and outputs y, € RP

Xp — Mpatch

V Vbatch + €

Yo =70z, + 8.

where @ is the Hadamard component-wise product, and v € RP and 8 € RP are

parameters to optimize.

Deep learning / 6.4. Batch normalization

Notes

€ deals with numerical issues when the variance
gets to zero.
The terminology for a batch normalization is the
same as for linear layers: v are the “weights” and
(3 the “bias”.

4/ 16

During inference, batch normalization shifts and rescales independently each component
of the input x according to statistics estimated during training:

Hence, during inference, batch normalization performs a component-wise affine
transformation, and it processes samples independently.

A As for dropout, the model behaves differently during train and test.

Frangois Fleuret Deep learning / 6.4. Batch normalization 5/16

Francois Fleuret

As dropout, batch normalization is implemented as separate modules that process input

components independently.

>>> bn = nn.BatchNorm1d(3)

>>> with torch.no_grad():
bn.bias.copy_(torch.tensor([2., 4., 8.]1))
bn.weight.copy_(torch.tensor([1., 2., 3.1))

Parameter containing:

tensor([2., 4., 8.], requires_grad=True)

Parameter containing:

tensor([1., 2., 3.], requires_grad=True)

>>> x = torch.randn(1000, 3)

>>> x = x * torch.tensor([2., 5., 10.]) + torch.tensor([-10., 25., 3.]1)
>>> x.mean(0)

tensor([-9.9669, 25.0213, 2.4361])

>>> x.std(0)

tensor([1.9063, 5.0764, 9.7474])

>>> y = bn(x)

>>> y.mean(0)

tensor ([2.0000, 4.0000, 8.0000], grad_fn=<MeanBackward2>)
>>> y.std(0)

tensor([1.0005, 2.0010, 3.0015], grad_fn=<StdBackwardl>)

Deep learning / 6.4. Batch normalization

Notes

To illustrate batch normalization, we create such
a layer and set the values of v and j3, stored
respectively in bn.weight and bn.bias

We then create a batch of 1000 samples in R® in
which the first dimension follows ./ (—10, 2), the
second //(25,5), and the third ///(3, 10).

We finally pass this batch through the batch nor-
malization layer, and see that the output batch is
rescaled to have the mean and standard deviation
as specified with 8 and ~.

6/16

As for any other module, we have to compute the derivatives of the loss £ with respect
to the inputs values and the parameters.

For clarity, since components are processed independently, in what follows we
consider a single dimension and do not index it.

Frangois Fleuret Deep learning / 6.4. Batch normalization 7/16

We have

. B
Mpatch = —= E Xp
B
b—1

1 B
. - A 2
Vbatch = E § (Xb - mbatch)
b=1

Xp — Mpatch
Vb=1,...,B, z, = >— 2

V Obatch + €
Yb = v2Zp + B.
From which
vVb=1,...,B, 6;.? :'yaﬁ
0z Oyp

Francois Fleuret Deep learning / 6.4. Batch normalization

8/ 16

Every sample in the batch impacts the moment estimates, hence all the outputs,
which makes the derivative with respect to an input complicated.

B
o 1, 3 OF .
OVpatch 9 (Vbatch + €) bZ:; oz (Xb mbatch)
oz 1 i 0F
OMMipatch V Vbatch + € $— 0zp
0 0% 1 2 0% 1 0%

\V/b:].,...,B, = — + — —~
Oxp 0zp \/VUpatch + € B OVpatch

Xp — M + —
(xb batch) B i

In standard implementations, test m and V are estimated with a moving average during
train, to avoid the need for an additional pass through the samples.

Frangois Fleuret Deep learning / 6.4. Batch normalization 9/16

Results on ImageNet's LSVRC2012:

0.8

0.7 -,

0.6H,

0.57:

= = =lInception

== BN-Baseline
<o BN-x5

BN-x30

+ - BN-x5-Sigmoid

4 Steps to match Inception
T n n

0.4

Figure 2: Single crop validation accuracy of Inception

tra

oM

ining steps.

15M

20M 25M

30M

Model Stepsto 72.2% Max accurac
Inception 31.0-10° 72.2%
BN-Baseline 13.3 - 106 72.7%
BN-x5 2.1-106 73.0%
BN-x30 2.7-108 74.8%
BN-x5-Sigmoid 69.8%

Figure 3: For Inception and the batch-normalize
variants, the number of training steps required
reach the maximum accuracy of Inception (72.29
and its batch-normalized variants, vs. the number of and the maximum accuracy achieved by the n

work.

The authors state that with batch normalization

e samples have to be shuffled carefully,

e the learning rate can be greater,

e dropout and local normalization are not necessary,

e L2 regularization influence should be reduced.

Frangois Fleuret

Deep learning / 6.4. Batch normalization

(loffe and Szegedy, 2015)

Notes

On the left graph, the blue diamonds show when
the different variants reach the asymptotic per-
formance of the inception network. With batch
normalization, the same performance is achieved
after a fraction of the training steps, even when

the sigmoid is used as a non-linearity.

Not only batch normalization trains faster, but it

eventually reaches better performance.

10/ 16

Deep MLP on a 2d “disc” toy example, with naive Gaussian weight initialization,

cross-entropy, standard SGD, n = 0.1.

def create_model(with
modules = []

modules.append (nn

if with_batchnorm:

modules.append (nn
for d in range(nb
modules.appen
if with_batch
modules.appen

modules.append (nn

return nn.Sequent

We try different stand

with torch.no_grad():

_batchnorm, dimh = 32, nb_layers = 16):

.Linear (2, dimh))
modules.append(nn.BatchNormld(dimh))
.ReLU())

_layers):

d(nn.Linear(dimh, dimh))

norm: modules.append(nn.BatchNormid(dimh))
d(nn.RelLU(Q))

.Linear(dimh, 2))

ial (*modules)

ard deviations for the weights

for p in model.parameters(): p.normal_(0, std)

Frangois Fleuret

Deep learning / 6.4. Batch normalization

Notes

We illustrate batch normalization with a 2D syn-
thetic problem in which points inside a disk belong
to class 1, and points outside belong to class 0.
Function create_model returns a MLP with a
batch normalization module between each linear
and ReLU modules if flag with_batchnorm is set.
We keep in the experiment the default values
for the number of layers and number of unit per
layer.

The weights of the linear modules are initialized
with a centered Gaussian noise, and not with
the default normalizing PyTorch procedure that
would compensate to some extent the absence
of batch normalization.

11/ 16

Baseline
60 —— With batch normalization

50 1

I
(e)
L

w
o
1

Test error

20

10 -

0 MR | T T L T T L T T LI | T T LI |
10-3 1072 107t 10° 10t
Weight std

Francois Fleuret Deep learning / 6.4. Batch normalization 12 /16

Notes

The graph shows the test error as a function of
the standard deviation used for initialization of
the weights.

The baseline curve shows that no matter what
the standard deviation used for initialization, the
network does not learn anything and the the test
accuracy is 50% (balanced classes).

When the standard deviation becomes reasonably
high, the network trained with batch normaliza-
tion modules does almost perfect.

Batch normalization fixes very well inappropriate
initialization of the weights, and beyond that,
makes all the layers behave similarly and in a
proper regime.

The position of batch normalization relative to the non-linearity is not clear.

“We add the BN transform immediately before the nonlinearity, by normalizing
x = Wu + b. We could have also normalized the layer inputs u, but since
u is likely the output of another nonlinearity, the shape of its distribution
is likely to change during training, and constraining its first and second
moments would not eliminate the covariate shift. In contrast, Wu + b
is more likely to have a symmetric, non-sparse distribution, that is 'more
Gaussian’ (Hyvarinen and Oja, 2000); normalizing it is likely to produce
activations with a stable distribution. "

(loffe and Szegedy, 2015)

Linear BN RelLU

However, this argument goes both ways: activations after the non-linearity are less
“naturally normalized” and benefit more from batch normalization. Experiments are
generally in favor of this solution, which is the current default.

Linear RelLU BN

Francois Fleuret Deep learning / 6.4. Batch normalization 13 /16

As for dropout, using properly batch normalization on a convolutional map requires
parameter-sharing.

The module torch.BatchNorm2d (respectively torch.BatchNorm3d) processes samples
as multi-channels 2d maps (respectively multi-channels 3d maps) and normalizes each
channel separately, with a v and a (3 for each.

Frangois Fleuret Deep learning / 6.4. Batch normalization 14 / 16

Another normalization in the same spirit is the layer normalization proposed by Ba et al.
(2016).

Given a single sample x € RP . it normalizes the components of x, hence normalizing
activations across the layer instead of doing it across the batch

1 D
p=—> X4
Dd:l
1 D
EENE) M7
d=1
vd, yd:X";“

Although it gives slightly worst improvements than BN it has the advantage of behaving
similarly in train and test, and processing samples individually.

Francois Fleuret Deep learning / 6.4. Batch normalization 15 / 16

These normalization schemes are examples of a larger class of methods.

Instance Norm Group Norm

Layer Norm

(Wu and He, 2018)

Deep learning / 6.4. Batch normalization 16 / 16

Francois Fleuret

References

J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. CoRR, abs/1607.06450, 2016.

A. Hyvérinen and E. Oja. Independent component analysis: Algorithms and applications. Neural
Networks, 13(4-5):411-430, 2000.

S. loffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International Conference on Machine Learning (ICML), 2015.

Y. Wu and K. He. Group normalization. CoRR, abs/1803.08494, 2018.

	References

