
Deep learning

6.4. Batch normalization

François Fleuret

https://fleuret.org/dlc/

https://fleuret.org/dlc/


We saw that maintaining proper statistics of the activations and derivatives was
a critical issue to allow the training of deep architectures.

It was the main motivation behind Xavier’s weight initialization rule.

A different approach consists of explicitly forcing the activation statistics during
the forward pass by re-normalizing them.

Batch normalization proposed by Ioffe and Szegedy (2015) was the first
method introducing this idea.

François Fleuret Deep learning / 6.4. Batch normalization 1 / 16



“Training Deep Neural Networks is complicated by the fact that the distribu-
tion of each layer’s inputs changes during training, as the parameters of
the previous layers change. This slows down the training by requiring lower
learning rates and careful parameter initialization /.../”

(Ioffe and Szegedy, 2015)

Batch normalization can be done anywhere in a deep architecture, and forces
the activations’ first and second order moments, so that the following layers do
not need to adapt to their drift.

François Fleuret Deep learning / 6.4. Batch normalization 2 / 16

Notes

The motivation for batchnorm as explained here is
that if the statistics of the activations are not con-
trolled during training, a layer will have to adapt
to the changes of the activations computed by
the previous layers in addition to making changes
to its own output to reduce the loss.



During training batch normalization shifts and rescales according to the mean and
variance estimated on the batch.

!
Processing a batch jointly is unusual. Operations used in deep models
can virtually always be formalized per-sample.

During test, it simply shifts and rescales according to the empirical moments estimated
during training.

François Fleuret Deep learning / 6.4. Batch normalization 3 / 16



If xb ∈ RD , b = 1, . . . ,B are the samples in the batch, we first compute the empirical
per-component mean and variance on the batch

m̂batch =
1

B

B∑
b=1

xb

v̂batch =
1

B

B∑
b=1

(xb − m̂batch)
2

from which we compute normalized zb ∈ RD , and outputs yb ∈ RD

∀b = 1, . . . ,B, zb =
xb − m̂batch√
v̂batch + ϵ

yb = γ ⊙ zb + β.

where ⊙ is the Hadamard component-wise product, and γ ∈ RD and β ∈ RD are
parameters to optimize.

François Fleuret Deep learning / 6.4. Batch normalization 4 / 16

Notes

ϵ deals with numerical issues when the variance
gets to zero.
The terminology for a batch normalization is the
same as for linear layers: γ are the “weights” and
β the “bias”.



During inference, batch normalization shifts and rescales independently each component
of the input x according to statistics estimated during training:

y = γ ⊙
x − m̂
√
v̂ + ϵ

+ β.

Hence, during inference, batch normalization performs a component-wise affine
transformation, and it processes samples independently.

! As for dropout, the model behaves differently during train and test.

François Fleuret Deep learning / 6.4. Batch normalization 5 / 16



As dropout, batch normalization is implemented as separate modules that process input
components independently.

>>> bn = nn.BatchNorm1d(3)
>>> with torch.no_grad():
... bn.bias.copy_(torch.tensor([2., 4., 8.]))
... bn.weight.copy_(torch.tensor([1., 2., 3.]))
...
Parameter containing:
tensor([2., 4., 8.], requires_grad=True)
Parameter containing:
tensor([1., 2., 3.], requires_grad=True)

>>> x = torch.randn(1000, 3)
>>> x = x * torch.tensor([2., 5., 10.]) + torch.tensor([-10., 25., 3.])
>>> x.mean(0)
tensor([-9.9669, 25.0213, 2.4361])
>>> x.std(0)
tensor([1.9063, 5.0764, 9.7474])

>>> y = bn(x)
>>> y.mean(0)
tensor([2.0000, 4.0000, 8.0000], grad_fn=<MeanBackward2>)
>>> y.std(0)
tensor([1.0005, 2.0010, 3.0015], grad_fn=<StdBackward1>)

François Fleuret Deep learning / 6.4. Batch normalization 6 / 16

Notes

To illustrate batch normalization, we create such
a layer and set the values of γ and β, stored
respectively in bn.weight and bn.bias.
We then create a batch of 1000 samples in R3 in
which the first dimension follows 𝒩 (−10, 2), the
second 𝒩 (25, 5), and the third 𝒩 (3, 10).
We finally pass this batch through the batch nor-
malization layer, and see that the output batch is
rescaled to have the mean and standard deviation
as specified with β and γ.



As for any other module, we have to compute the derivatives of the loss ℒ with respect
to the inputs values and the parameters.

For clarity, since components are processed independently, in what follows we
consider a single dimension and do not index it.

François Fleuret Deep learning / 6.4. Batch normalization 7 / 16



We have

m̂batch =
1

B

B∑
b=1

xb

v̂batch =
1

B

B∑
b=1

(xb − m̂batch)
2

∀b = 1, . . . ,B, zb =
xb − m̂batch√
v̂batch + ϵ

yb = γzb + β.

From which

∀b = 1, . . . ,B,
∂ℒ

∂zb
= γ

∂ℒ

∂yb
∂ℒ

∂γ
=

∑
b

∂ℒ

∂yb

∂yb

∂γ
=

∑
b

∂ℒ

∂yb
zb

∂ℒ

∂β
=

∑
b

∂ℒ

∂yb

∂yb

∂β
=

∑
b

∂ℒ

∂yb
.

François Fleuret Deep learning / 6.4. Batch normalization 8 / 16



Every sample in the batch impacts the moment estimates, hence all the outputs,
which makes the derivative with respect to an input complicated.

∂ℒ

∂v̂batch
= −

1

2
(v̂batch + ϵ)−3/2

B∑
b=1

∂ℒ

∂zb
(xb − m̂batch)

∂ℒ

∂m̂batch
= −

1
√
v̂batch + ϵ

B∑
b=1

∂ℒ

∂zb

∀b = 1, . . . ,B,
∂ℒ

∂xb
=

∂ℒ

∂zb

1
√
v̂batch + ϵ

+
2

B

∂ℒ

∂v̂batch
(xb − m̂batch) +

1

B

∂ℒ

∂m̂batch

In standard implementations, test m̂ and v̂ are estimated with a moving average during
train, to avoid the need for an additional pass through the samples.

François Fleuret Deep learning / 6.4. Batch normalization 9 / 16



Results on ImageNet’s LSVRC2012:

5M 10M 15M 20M 25M 30M
0.4

0.5

0.6

0.7

0.8

Inception
BN−Baseline
BN−x5
BN−x30
BN−x5−Sigmoid
Steps to match Inception

Figure 2: Single crop validation accuracy of Inception
and its batch-normalized variants, vs. the number of
training steps.

Model Steps to 72.2% Max accuracy
Inception 31.0 · 106 72.2%

BN-Baseline 13.3 · 106 72.7%
BN-x5 2.1 · 106 73.0%
BN-x30 2.7 · 106 74.8%

BN-x5-Sigmoid 69.8%

Figure 3: For Inception and the batch-normalized
variants, the number of training steps required to
reach the maximum accuracy of Inception (72.2%),
and the maximum accuracy achieved by the net-
work.

4.2.2 Single-Network Classification

We evaluated the following networks, all trained on the
LSVRC2012 training data, and tested on the validation
data:

Inception: the network described at the beginning of
Section 4.2, trained with the initial learning rate of 0.0015.

BN-Baseline: Same as Inception with Batch Normal-
ization before each nonlinearity.

BN-x5: Inception with Batch Normalization and the
modifications in Sec. 4.2.1. The initial learning rate was
increased by a factor of 5, to 0.0075. The same learning
rate increase with original Inception caused the model pa-
rameters to reach machine infinity.

BN-x30: Like BN-x5, but with the initial learning rate
0.045 (30 times that of Inception).

BN-x5-Sigmoid: Like BN-x5, but with sigmoid non-
linearity g(t) = 1

1+exp(−x) instead of ReLU. We also at-
tempted to train the original Inception with sigmoid, but
the model remained at the accuracy equivalent to chance.

In Figure 2, we show the validation accuracy of the
networks, as a function of the number of training steps.
Inception reached the accuracy of 72.2% after31 · 106
training steps. The Figure 3 shows, for each network,
the number of training steps required to reach the same
72.2% accuracy, as well as the maximum validation accu-
racy reached by the network and the number of steps to
reach it.

By only using Batch Normalization (BN-Baseline), we
match the accuracy of Inception in less than half the num-
ber of training steps. By applying the modifications in
Sec. 4.2.1, we significantly increase the training speed of
the network.BN-x5 needs 14 times fewer steps than In-
ception to reach the 72.2% accuracy. Interestingly, in-
creasing the learning rate further (BN-x30) causes the
model to train somewhatslower initially, but allows it to
reach a higher final accuracy. It reaches 74.8% after6·106
steps, i.e. 5 times fewer steps than required by Inception
to reach 72.2%.

We also verified that the reduction in internal covari-
ate shift allows deep networks with Batch Normalization

to be trained when sigmoid is used as the nonlinearity,
despite the well-known difficulty of training such net-
works. Indeed,BN-x5-Sigmoidachieves the accuracy of
69.8%. Without Batch Normalization, Inception with sig-
moid never achieves better than1/1000 accuracy.

4.2.3 Ensemble Classification

The current reported best results on the ImageNet Large
Scale Visual Recognition Competition are reached by the
Deep Image ensemble of traditional models (Wu et al.,
2015) and the ensemble model of (He et al., 2015). The
latter reports the top-5 error of 4.94%, as evaluated by the
ILSVRC server. Here we report a top-5 validation error of
4.9%, and test error of 4.82% (according to the ILSVRC
server). This improves upon the previous best result, and
exceeds the estimated accuracy of human raters according
to (Russakovsky et al., 2014).

For our ensemble, we used 6 networks. Each was based
onBN-x30, modified via some of the following: increased
initial weights in the convolutional layers; using Dropout
(with the Dropout probability of 5% or 10%, vs. 40%
for the original Inception); and using non-convolutional,
per-activation Batch Normalization with last hidden lay-
ers of the model. Each network achieved its maximum
accuracy after about6 · 106 training steps. The ensemble
prediction was based on the arithmetic average of class
probabilities predicted by the constituent networks. The
details of ensemble and multicrop inference are similar to
(Szegedy et al., 2014).

We demonstrate in Fig. 4 that batch normalization al-
lows us to set new state-of-the-art by a healthy margin on
the ImageNet classification challenge benchmarks.

5 Conclusion

We have presented a novel mechanism for dramatically
accelerating the training of deep networks. It is based on
the premise that covariate shift, which is known to com-
plicate the training of machine learning systems, also ap-

7

(Ioffe and Szegedy, 2015)

The authors state that with batch normalization

• samples have to be shuffled carefully,

• the learning rate can be greater,

• dropout and local normalization are not necessary,

• L2 regularization influence should be reduced.

François Fleuret Deep learning / 6.4. Batch normalization 10 / 16

Notes

On the left graph, the blue diamonds show when
the different variants reach the asymptotic per-
formance of the inception network. With batch
normalization, the same performance is achieved
after a fraction of the training steps, even when
the sigmoid is used as a non-linearity.
Not only batch normalization trains faster, but it
eventually reaches better performance.



Deep MLP on a 2d “disc” toy example, with naive Gaussian weight initialization,
cross-entropy, standard SGD, η = 0.1.

def create_model(with_batchnorm, dimh = 32, nb_layers = 16):
modules = []

modules.append(nn.Linear(2, dimh))
if with_batchnorm: modules.append(nn.BatchNorm1d(dimh))
modules.append(nn.ReLU())

for d in range(nb_layers):
modules.append(nn.Linear(dimh, dimh))
if with_batchnorm: modules.append(nn.BatchNorm1d(dimh))
modules.append(nn.ReLU())

modules.append(nn.Linear(dimh, 2))

return nn.Sequential(*modules)

We try different standard deviations for the weights

with torch.no_grad():
for p in model.parameters(): p.normal_(0, std)

François Fleuret Deep learning / 6.4. Batch normalization 11 / 16

Notes

We illustrate batch normalization with a 2D syn-
thetic problem in which points inside a disk belong
to class 1, and points outside belong to class 0.
Function create_model returns a MLP with a
batch normalization module between each linear
and ReLU modules if flag with_batchnorm is set.
We keep in the experiment the default values
for the number of layers and number of unit per
layer.
The weights of the linear modules are initialized
with a centered Gaussian noise, and not with
the default normalizing PyTorch procedure that
would compensate to some extent the absence
of batch normalization.



10−3 10−2 10−1 100 101

Weight std

0

10

20

30

40

50

60

T
es

t
er

ro
r

Baseline

With batch normalization

François Fleuret Deep learning / 6.4. Batch normalization 12 / 16

Notes

The graph shows the test error as a function of
the standard deviation used for initialization of
the weights.
The baseline curve shows that no matter what
the standard deviation used for initialization, the
network does not learn anything and the the test
accuracy is 50% (balanced classes).
When the standard deviation becomes reasonably
high, the network trained with batch normaliza-
tion modules does almost perfect.
Batch normalization fixes very well inappropriate
initialization of the weights, and beyond that,
makes all the layers behave similarly and in a
proper regime.



The position of batch normalization relative to the non-linearity is not clear.

“We add the BN transform immediately before the nonlinearity, by normalizing
x = Wu + b. We could have also normalized the layer inputs u, but since
u is likely the output of another nonlinearity, the shape of its distribution
is likely to change during training, and constraining its first and second
moments would not eliminate the covariate shift. In contrast, Wu + b
is more likely to have a symmetric, non-sparse distribution, that is ’more
Gaussian’ (Hyvärinen and Oja, 2000); normalizing it is likely to produce
activations with a stable distribution. ”

(Ioffe and Szegedy, 2015)

. . . Linear BN ReLU . . .

However, this argument goes both ways: activations after the non-linearity are less
“naturally normalized” and benefit more from batch normalization. Experiments are
generally in favor of this solution, which is the current default.

. . . Linear ReLU BN . . .

François Fleuret Deep learning / 6.4. Batch normalization 13 / 16



As for dropout, using properly batch normalization on a convolutional map requires
parameter-sharing.

The module torch.BatchNorm2d (respectively torch.BatchNorm3d) processes samples
as multi-channels 2d maps (respectively multi-channels 3d maps) and normalizes each
channel separately, with a γ and a β for each.

François Fleuret Deep learning / 6.4. Batch normalization 14 / 16



Another normalization in the same spirit is the layer normalization proposed by Ba et al.
(2016).

Given a single sample x ∈ RD , it normalizes the components of x , hence normalizing
activations across the layer instead of doing it across the batch

µ =
1

D

D∑
d=1

xd

σ =

√√√√ 1

D

D∑
d=1

(xd − µ)2

∀d , yd =
xd − µ

σ

Although it gives slightly worst improvements than BN it has the advantage of behaving
similarly in train and test, and processing samples individually.

François Fleuret Deep learning / 6.4. Batch normalization 15 / 16



These normalization schemes are examples of a larger class of methods.
H

, W

C N

Batch Norm

H
, W

C N

Layer Norm

H
, W

C N

Instance Norm

H
, W

C N

Group Norm

Figure 2. Normalization methods. Each subplot shows a feature map tensor, with N as the batch axis, C as the channel axis, and (H,W )
as the spatial axes. The pixels in blue are normalized by the same mean and variance, computed by aggregating the values of these pixels.

number. ShuffleNet [65] proposes a channel shuffle oper-
ation that permutes the axes of grouped features. These
methods all involve dividing the channel dimension into
groups. Despite the relation to these methods, GN does not
require group convolutions. GN is a generic layer, as we
evaluate in standard ResNets [20].

3. Group Normalization

The channels of visual representations are not entirely
independent. Classical features of SIFT [39], HOG [9],
and GIST [41] are group-wise representations by design,
where each group of channels is constructed by some kind
of histogram. These features are often processed by group-
wise normalization over each histogram or each orientation.
Higher-level features such as VLAD [29] and Fisher Vec-
tors (FV) [44] are also group-wise features where a group
can be thought of as the sub-vector computed with respect
to a cluster.

Analogously, it is not necessary to think of deep neu-
ral network features as unstructured vectors. For example,
for conv1 (the first convolutional layer) of a network, it is
reasonable to expect a filter and its horizontal flipping to
exhibit similar distributions of filter responses on natural
images. If conv1 happens to approximately learn this pair
of filters, or if the horizontal flipping (or other transforma-
tions) is made into the architectures by design [11, 8], then
the corresponding channels of these filters can be normal-
ized together.

The higher-level layers are more abstract and their be-
haviors are not as intuitive. However, in addition to orien-
tations (SIFT [39], HOG [9], or [11, 8]), there are many
factors that could lead to grouping, e.g., frequency, shapes,
illumination, textures. Their coefficients can be interde-
pendent. In fact, a well-accepted computational model
in neuroscience is to normalize across the cell responses
[21, 52, 55, 5], “with various receptive-field centers (cov-
ering the visual field) and with various spatiotemporal fre-
quency tunings” (p183, [21]); this can happen not only in
the primary visual cortex, but also “throughout the visual
system” [5]. Motivated by these works, we propose new
generic group-wise normalization for deep neural networks.

3.1. Formulation

We first describe a general formulation of feature nor-
malization, and then present GN in this formulation. A fam-
ily of feature normalization methods, including BN, LN, IN,
and GN, perform the following computation:

x̂i =
1

σi
(xi − µi). (1)

Here x is the feature computed by a layer, and i is an index.
In the case of 2D images, i = (iN , iC , iH , iW ) is a 4D vec-
tor indexing the features in (N,C,H,W ) order, whereN is
the batch axis, C is the channel axis, and H and W are the
spatial height and width axes.
µ and σ in (1) are the mean and standard deviation (std)

computed by:

µi =
1

m

∑

k∈Si
xk, σi =

√
1

m

∑

k∈Si
(xk − µi)2 + ε, (2)

with ε as a small constant. Si is the set of pixels in which
the mean and std are computed, andm is the size of this set.
Many types of feature normalization methods mainly differ
in how the set Si is defined (Figure 2), discussed as follows.

In Batch Norm [26], the set Si is defined as:

Si = {k | kC = iC}, (3)

where iC (and kC) denotes the sub-index of i (and k) along
the C axis. This means that the pixels sharing the same
channel index are normalized together, i.e., for each chan-
nel, BN computes µ and σ along the (N,H,W ) axes. In
Layer Norm [3], the set is:

Si = {k | kN = iN}, (4)

meaning that LN computes µ and σ along the (C,H,W )
axes for each sample. In Instance Norm [61], the set is:

Si = {k | kN = iN , kC = iC}. (5)

meaning that IN computes µ and σ along the (H,W ) axes
for each sample and each channel. The relations among BN,
LN, and IN are in Figure 2.

3

(Wu and He, 2018)

François Fleuret Deep learning / 6.4. Batch normalization 16 / 16



References

J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. CoRR, abs/1607.06450, 2016.

A. Hyvärinen and E. Oja. Independent component analysis: Algorithms and applications. Neural
Networks, 13(4-5):411–430, 2000.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International Conference on Machine Learning (ICML), 2015.

Y. Wu and K. He. Group normalization. CoRR, abs/1803.08494, 2018.


	References

