
Deep learning

6.1. Benefits of depth

François Fleuret

https://fleuret.org/dlc/

https://fleuret.org/dlc/

Using deeper architectures has been key in improving performance in many
applications. For instance image classification:

model top-1 err. top-5 err.

VGG-16 [41] 28.07 9.33
GoogLeNet [44] - 9.15
PReLU-net [13] 24.27 7.38

plain-34 28.54 10.02
ResNet-34 A 25.03 7.76
ResNet-34 B 24.52 7.46
ResNet-34 C 24.19 7.40
ResNet-50 22.85 6.71
ResNet-101 21.75 6.05
ResNet-152 21.43 5.71

Table 3. Error rates (%, 10-crop testing) on ImageNet validation.
VGG-16 is based on our test. ResNet-50/101/152 are of option B
that only uses projections for increasing dimensions.

method top-1 err. top-5 err.

VGG [41] (ILSVRC’14) - 8.43†

GoogLeNet [44] (ILSVRC’14) - 7.89
VGG [41] (v5) 24.4 7.1
PReLU-net [13] 21.59 5.71
BN-inception [16] 21.99 5.81
ResNet-34 B 21.84 5.71
ResNet-34 C 21.53 5.60
ResNet-50 20.74 5.25
ResNet-101 19.87 4.60
ResNet-152 19.38 4.49

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except † reported on the test set).

method top-5 err. (test)
VGG [41] (ILSVRC’14) 7.32
GoogLeNet [44] (ILSVRC’14) 6.66
VGG [41] (v5) 6.8
PReLU-net [13] 4.94
BN-inception [16] 4.82
ResNet (ILSVRC’15) 3.57

Table 5. Error rates (%) of ensembles. The top-5 error is on the
test set of ImageNet and reported by the test server.

ResNet reduces the top-1 error by 3.5% (Table 2), resulting
from the successfully reduced training error (Fig. 4 right vs.
left). This comparison verifies the effectiveness of residual
learning on extremely deep systems.

Last, we also note that the 18-layer plain/residual nets
are comparably accurate (Table 2), but the 18-layer ResNet
converges faster (Fig. 4 right vs. left). When the net is “not
overly deep” (18 layers here), the current SGD solver is still
able to find good solutions to the plain net. In this case, the
ResNet eases the optimization by providing faster conver-
gence at the early stage.

Identity vs. Projection Shortcuts. We have shown that

3x3, 64

1x1, 64

relu

1x1, 256

relu

relu

3x3, 64

3x3, 64

relu

relu

64-d 256-d

Figure 5. A deeper residual function F for ImageNet. Left: a
building block (on 56×56 feature maps) as in Fig. 3 for ResNet-
34. Right: a “bottleneck” building block for ResNet-50/101/152.

parameter-free, identity shortcuts help with training. Next
we investigate projection shortcuts (Eqn.(2)). In Table 3 we
compare three options: (A) zero-padding shortcuts are used
for increasing dimensions, and all shortcuts are parameter-
free (the same as Table 2 and Fig. 4 right); (B) projec-
tion shortcuts are used for increasing dimensions, and other
shortcuts are identity; and (C) all shortcuts are projections.

Table 3 shows that all three options are considerably bet-
ter than the plain counterpart. B is slightly better than A. We
argue that this is because the zero-padded dimensions in A
indeed have no residual learning. C is marginally better than
B, and we attribute this to the extra parameters introduced
by many (thirteen) projection shortcuts. But the small dif-
ferences among A/B/C indicate that projection shortcuts are
not essential for addressing the degradation problem. So we
do not use option C in the rest of this paper, to reduce mem-
ory/time complexity and model sizes. Identity shortcuts are
particularly important for not increasing the complexity of
the bottleneck architectures that are introduced below.

Deeper Bottleneck Architectures. Next we describe our
deeper nets for ImageNet. Because of concerns on the train-
ing time that we can afford, we modify the building block
as a bottleneck design4. For each residual function F , we
use a stack of 3 layers instead of 2 (Fig. 5). The three layers
are 1×1, 3×3, and 1×1 convolutions, where the 1×1 layers
are responsible for reducing and then increasing (restoring)
dimensions, leaving the 3×3 layer a bottleneck with smaller
input/output dimensions. Fig. 5 shows an example, where
both designs have similar time complexity.

The parameter-free identity shortcuts are particularly im-
portant for the bottleneck architectures. If the identity short-
cut in Fig. 5 (right) is replaced with projection, one can
show that the time complexity and model size are doubled,
as the shortcut is connected to the two high-dimensional
ends. So identity shortcuts lead to more efficient models
for the bottleneck designs.

50-layer ResNet: We replace each 2-layer block in the

4Deeper non-bottleneck ResNets (e.g., Fig. 5 left) also gain accuracy
from increased depth (as shown on CIFAR-10), but are not as economical
as the bottleneck ResNets. So the usage of bottleneck designs is mainly due
to practical considerations. We further note that the degradation problem
of plain nets is also witnessed for the bottleneck designs.

6

(He et al., 2015)

“Notably, we did not depart from the classical ConvNet architecture of LeCun
et al. (1989), but improved it by substantially increasing the depth.”

(Simonyan and Zisserman, 2014)

François Fleuret Deep learning / 6.1. Benefits of depth 1 / 13

Notes

• LeNet5 8 layers (LeCun et al., 1998),

• AlexNet 8 layers (Krizhevsky et al., 2012),

• Inception v1 22 layers (Szegedy et al.,
2015),

• Inception v4 76 layers (Szegedy et al.,
2016),

• VGG16 has 16 layers (Simonyan and
Zisserman, 2014),

• Resnet 34 to 152 layers (He et al., 2015).

Deeper architectures tend to have greater accu-
racy.

A theoretical analysis provides an intuition of how a network’s output “irregularity”
grows:

• linearly with its width and

• exponentially with its depth.

François Fleuret Deep learning / 6.1. Benefits of depth 2 / 13

Notes

We will see that [a measure of] the complexity
of the mapping encoded by a multi-layer model
increases exponentially with its depth and linearly
with its layers’ widths.

Let ℱ be the set of piece-wise linear mappings on [0, 1], and ∀f ∈ ℱ , let κ(f) be the
minimum number of linear pieces in f .

Let σ be the ReLU function

σ : R → R
x 7→ max(0, x).

If we compose σ and f ∈ ℱ , any linear piece that does not cross 0 remains a single
piece or disappears, and one that does cross 0 breaks into two, hence

∀f ∈ ℱ , κ(σ(f)) ≤ 2κ(f) .

François Fleuret Deep learning / 6.1. Benefits of depth 3 / 13

Notes

When we compose σ (ReLU) with f , then three
situations can occur for a linear piece:

(a) If the linear piece is negative, then it is
mapped to 0 by ReLU, and therefore
results in at most one linear piece in σ ◦ f .

(b) If the linear piece crosses y = 0, then a
part of it is positive, and the other is
negative, and the latter will be mapped to
0. Therefore this piece for f becomes two
pieces for σ ◦ f .

(c) If the linear piece is positive, then it
remains unchanged by ReLU, and σ ◦ f
has still one linear piece.

f

σ ◦ f

(a)

(b)

(c)

Also, when summing functions, a change of slope in the sum happens only if there was
a change of slope in one of the operands.

f1

f2

f1 + f2

Hence

∀fn ∈ ℱ , n = 1, . . . ,N, κ

(∑
n

fn

)
≤
∑
n

κ(fn) .

François Fleuret Deep learning / 6.1. Benefits of depth 4 / 13

Consider a MLP with ReLU, D layers, a single input unit, and a single output unit.

x01 = x ,

∀d = 1, . . . ,D, ∀i ,
{

sdi =
∑W (d−1)

j=1 wd
i,jx

d−1
j + bdi

xdi = σ(sdi)

y = xD1 .

All the sdi s and xdi s are piece-wise linear functions of x with ∀i , κ
(
s1i
)
= 1, and

∀d , i , κ
(
xdi

)
= κ

(
σ(sdi)

)
≤ 2κ

(
sdi

)
≤ 2

W (d−1)∑
j=1

κ
(
wd
i,jx

d−1
j + bdi

)
= 2

W (d−1)∑
j=1

κ
(
xd−1
j

)
from which

∀d ,max
i

κ
(
xdi

)
≤ 2W (d−1) max

j
κ
(
xd−1
j

)
and we get the following bound for any ReLU MLP

κ(y) ≤ 2D
D∏

d=1

W (d).

François Fleuret Deep learning / 6.1. Benefits of depth 5 / 13

Although this seems quite a pessimistic bound, we can hand-design a network that
[almost] reaches it:

x
(0)
1 = x

s
(1)
1

s
(1)
2

Layer 1

x
(1)
1

σ

x
(1)
2

σ

s
(2)
1

s
(2)
2

Layer 2

x
(2)
1

σ

x
(2)
2

σ

s
(3)
1

s
(3)
2

Layer 3

x
(3)
1

σ

x
(3)
2

σ

f (x)

François Fleuret Deep learning / 6.1. Benefits of depth 7 / 13

Notes

Here we have:

• s
(1)
1 = 2x

(0)
1 − 1 and x

(1)
1 = max(0, s

(1)
1)

• s
(1)
2 = −2x

(0)
1 + 1 and

x
(1)
2 = max(0, s

(1)
2)

• s
(2)
1 = 2

(
x
(1)
1 + x

(1)
2

)
− 1

• s
(2)
2 = −2

(
x
(1)
1 + x

(1)
2

)
+ 1

• s
(3)
1 = 2

(
x
(2)
1 + x

(2)
2

)
− 1

• s
(3)
2 = −2

(
x
(2)
1 + x

(2)
2

)
+ 1

• f (x) = x
(3)
1 + x

(3)
2

In the case of 3 layers as depicted here, we have
κ (f (x)) = 8.

So for any D∗, there is a network with D∗ hidden layers and 2D∗ hidden units which
computes an f : [0, 1] → [0, 1] of period 1/2D

∗

. . .

1
2D

∗ . . .

François Fleuret Deep learning / 6.1. Benefits of depth 8 / 13

. . .

1
2D

∗ . . .

Given g ∈ ℱ , it crosses 1
2
at most κ(g) times, which means that on at least

2D
∗ − κ(g) segments of length 1/2D

∗
, it is on one side of 1

2
, and

∥f − g∥1 =

∫ 1

0
|f (x)− g(x)|

≥
(
2D

∗
− κ(g)

) 1

2

1

2D∗

∫ 1

0

∣∣∣∣f (x)− 1

2

∣∣∣∣
=

1

16

(
1−

κ(g)

2D∗

)
.

And we multiply f by 16 to get rid of the 1
16
.

François Fleuret Deep learning / 6.1. Benefits of depth 9 / 13

Notes

Here, the f we built is shown in red mapping,
and g is a piece-wise linear mapping shown in
green.

In any of the slice of width 1/2D
∗
, the undimmed

gray part has an area of

1

2

∫ 1/2D
∗

0

∣∣∣∣f (x) − 1

2

∣∣∣∣ = 1

2D∗
1

8
.

The final result on the slide shows that the L1

distance between f and any function which has
a small κ is large.

So, considering ReLU MLPs with a single input/output, there exists a network f with
D∗ layers, and 2D∗ internal units, such that, for any network g with D layers of sizes
{W (1), . . . ,W (D)}, since κ(g) ≤ 2D

∏D
d=1 W

(d):

∥f − g∥1 ≥ 1−
2D

2D∗

D∏
d=1

W (d).

In particular, with g a single hidden layer network

∥f − g∥1 ≥ 1− 2
W (1)

2D∗ .

To approximate f properly, the width W (1) of g ’s hidden layer has to increase
exponentially with f ’s depth D∗.

This is a simplified variant of results by Telgarsky (2015, 2016).

François Fleuret Deep learning / 6.1. Benefits of depth 10 / 13

Regarding over-fitting, over-parametrizing a deep model often improves test
performance, contrary to what the bias-variance decomposition predicts (Belkin et al.,
2018).

R
is
k

Training risk

Test risk

Complexity of H
sweet spot

under-fitting over-fitting

(a) U-shaped “bias-variance” risk curve
R
is
k

Training risk

Test risk

Complexity of H

under-parameterized

“modern”
interpolating regime

interpolation threshold

over-parameterized

“classical”
regime

(b) “double descent” risk curve

Figure 1: Curves for training risk (dashed line) and test risk (solid line). (a) The classical U-shaped risk curve
arising from the bias-variance trade-off. (b) The double descent risk curve, which incorporates the U-shaped
risk curve (i.e., the “classical” regime) together with the observed behavior from using high complexity
function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The
predictors to the right of the interpolation threshold have zero training risk.

Most classical analyses of ERM are based on controlling the complexity of the function classH (some-
times called the model complexity) by managing the bias-variance trade-off (cf., [15]):

1. If H is too small, all predictors in H may under-fit the training data (i.e., have large empirical risk)
and hence predict poorly on new data.

2. If H is too large, the empirical risk minimizer may over-fit spurious patterns in the training data that
result in poor accuracy on new examples (i.e., small empirical risk but large true risk).

The classical analysis is concerned with finding the “sweet spot” for the function class complexity that
balances these two concerns. The control of the function class complexity may be explicit, via the choice
of H (e.g., picking the neural network architecture), or it may be implicit, using regularization (e.g., early
stopping, complexity penalization). When a suitable balance is achieved, the performance of hn on the
training data is said to generalize to the population P . This is summarized in the classical U-shaped risk
curve, shown in Figure 1(a).

Conventional wisdom in machine learning expounds the hazards of over-fitting. The textbook corollary
of these hazards is that “a model with zero training error is overfit to the training data and will typically
generalize poorly” [15].

However, practitioners routinely use modern machine learning methods to fit the training data perfectly
or near-perfectly. For instance, highly complex neural networks and other non-linear predictors are often
trained to have very low or even zero training risk. In spite of the high function class complexity and
near-perfect fit to training data, these predictors often have excellent generalization performance—i.e., they
give accurate predictions on new data. Indeed, this behavior has guided a best practice in deep learning for
choosing the neural network architecture, specifically that the network architecture should be large enough
to permit effortless interpolation of the training data [21]. Moreover, recent evidence indicates that neural
networks and kernel machines trained to interpolate the training data obtain near-optimal test results even
when the training data are corrupted with high levels of noise [28, 3].

In this work, we bridge the gap between classical statistical analyses and the modern practice of machine
learning. We show that the classical U-shaped risk curve of the bias-variance trade-off, as well as the modern
behavior where high function class complexity is compatible with good generalization behavior, can both
be empirically witnessed with some important function classes including neural networks.

2

(Belkin et al., 2018)

François Fleuret Deep learning / 6.1. Benefits of depth 11 / 13

Notes

This results shows that can build more “compli-
cated” models by stacking up layers instead of
making a few layers larger.
Surprisingly, those deep architectures reach better
test performance in practice. This seems incon-
sistent with what we have seen with the bias /
variance in lecture 2.3. “Bias-variance dilemma”:
deep architectures should over-fit and the perfor-
mance decreases in test (left figure).
In the double descent curve (right picture), after
the model does perfectly well on the training set
(point “interpolation threshold”), the optimiza-
tion of the parameters is entirely driven by the
bias in the model and the regularization mecha-
nism present in the training process (L2 penalty,
SGD, etc.), and the mapping may get better on
unseen samples. This interpretation may explain
in part why deep networks with billions of param-
eters do so well although trained with a lesser
number of samples.

So we have good reasons to increase depth, but we saw that an important issue then is
to control the amplitude of the gradient, which is tightly related to controlling
activations.

In particular we have to ensure that

• the gradient does not “vanish” (Bengio et al., 1994; Hochreiter et al., 2001),

• gradient amplitude is homogeneous so that all parts of the network train at the
same rate (Glorot and Bengio, 2010),

• the gradient does not vary too unpredictably when the weights change (Balduzzi
et al., 2017).

François Fleuret Deep learning / 6.1. Benefits of depth 12 / 13

Modern techniques change the functional itself instead of trying to improve training
“from the outside” through penalty terms or better optimizers.

Our main concern is to make the gradient descent work, even at the cost of
engineering substantially the class of functions.

An additional issue for training very large architectures is the computational cost, which
often turns out to be the main practical problem.

François Fleuret Deep learning / 6.1. Benefits of depth 13 / 13

References

D. Balduzzi, M. Frean, L. Leary, J. Lewis, K. Wan-Duo Ma, and B. McWilliams. The shattered
gradients problem: If resnets are the answer, then what is the question? CoRR,
abs/1702.08591, 2017.

M. Belkin, D. Hsu, S. Ma, and S. Mandal. Reconciling modern machine learning and the
bias-variance trade-off. CoRR, abs/1812.11118, 2018.

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is
difficult. IEEE Transactions on Neural Networks, 5(2):157–166, Mar. 1994.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural
networks. In International Conference on Artificial Intelligence and Statistics (AISTATS), 2010.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CoRR,
abs/1512.03385, 2015.

S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber. Gradient Flow in Recurrent Nets: the
Difficulty of Learning Long-Term Dependencies, pages 237–243. IEEE Press, 2001.

A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural
networks. In Neural Information Processing Systems (NIPS), 2012.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.
Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4):
541–551, 1989.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich. Going deeper with convolutions. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

C. Szegedy, S. Ioffe, and V. Vanhoucke. Inception-v4, inception-resnet and the impact of residual
connections on learning. CoRR, abs/1602.07261, 2016.

M. Telgarsky. Representation benefits of deep feedforward networks. CoRR, abs/1509.08101, 2015.

M. Telgarsky. Benefits of depth in neural networks. CoRR, abs/1602.04485, 2016.

	References

