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Using deeper architectures has been key in improving performance in many
applications. For instance image classification:

model top-1 err. top-5 err.
VGG-16 [41] 28.07 9.33
GoogLeNet [44] - 9.15
PReLU-net [13] 24.27 7.38
plain-34 28.54 10.02
ResNet-34 A 25.03 7.76
ResNet-34 B 24.52 7.46
ResNet-34 C 24.19 7.40
ResNet-50 22.85 6.71
ResNet-101 21.75 6.05
ResNet-152 21.43 5.71

Table 3. Error rates (%, 10-crop testing) on ImageNet validation.
VGG-16 is based on our test. ResNet-50/101/152 are of option B
that only uses projections for increasing dimensions.

(He et al., 2015)

“Notably, we did not depart from the classical ConvNet architecture of LeCun
et al. (1989), but improved it by substantially increasing the depth.”

(Simonyan and Zisserman, 2014)
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Notes

e LeNet5 8 layers (LeCun et al., 1998),
e AlexNet 8 layers (Krizhevsky et al., 2012),

e Inception v1 22 layers (Szegedy et al.,
2015),

e Inception v4 76 layers (Szegedy et al.,
2016),

e VGG16 has 16 layers (Simonyan and
Zisserman, 2014),

e Resnet 34 to 152 layers (He et al., 2015).

Deeper architectures tend to have greater accu-
racy.



A theoretical analysis provides an intuition of how a network’s output “irregularity”

grows:

e linearly with its width and

e exponentially with its depth.
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Notes

We will see that [a measure of] the complexity
of the mapping encoded by a multi-layer model
increases exponentially with its depth and linearly
with its layers’ widths.



Let # be the set of piece-wise linear mappings on [0, 1], and Vf € &, let x(f) be the
minimum number of linear pieces in f.

Let o be the RelLU function

c:R—=R
x — max(0, x).

If we compose o and f € &, any linear piece that does not cross 0 remains a single
piece or disappears, and one that does cross 0 breaks into two, hence

Vi e F, k(o(f)) < 2k(f).
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Notes

When we compose o (ReLU) with f, then three
situations can occur for a linear piece:

(a) If the linear piece is negative, then it is
mapped to 0 by ReLU, and therefore
results in at most one linear piece in o o f.

(a)
(b) If the linear piece crosses y = 0, then a _/
part of it is positive, and the other is
negative, and the latter will be mapped to (b)
0. Therefore this piece for f becomes two
pieces for o o f.

(c) If the linear piece is positive, then it
remains unchanged by RelLU, and o o f
has still one linear piece. (c)




Also, when summing functions, a change of slope in the sum happens only if there was
a change of slope in one of the operands.

i+ h
fi

f

Hence
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Consider a MLP with ReLU, D layers, a single input unit, and a single output unit.

X = x,
d _ w1 4 d-1 d
Vd=1,...,D,VYi, { ST Wiy
x¢  =o(sf)
Yy =X

All the sfs and x7s are piece-wise linear functions of x with Vi, x(s!) = 1, and

) w(d—1)

vd, i,m(xﬁ) = K(O'(Sid)> < 2&(5,—") < 2W(zd:1 /{(Wlffjxjfj—l + b?) =2 Z n(xjd_1>
=1 =1

from which

vd, maxn(xf’) <2wld-1) maxm(xjd_1>
I J

and we get the following bound for any ReLU MLP

D
K(y) < 2P H wid).
d=1
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Although this seems quite a pessimistic bound, we can hand-design a network that

[almost] reaches it:

7/13
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Notes
Here we have:
(1) _ 5,0 (1) _ (1)
o 57/ =2x" —1 and x;7/ = max(0,s,"”)

° sél) = —2X§0) +1 and

xél) = max(0, sél))
. sf) =2 <X§1) + X§1)> -1
o o2 =2 (x4 41
. $£3) =2 <X§2) + X§2)> —1
o o =2 (x4 A0 11
o f(x) = x4+

In the case of 3 layers as depicted here, we have
K (f(x)) = 8.



So for any D*, there is a network with D* hidden layers and 2D* hidden units which
computes an f : [0,1] — [0, 1] of period 1/2P

.H]: |

N
o]
*
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(y

Given g € &, it crosses % at most x(g) times, which means that on at least

.Hi |

D*

N

*

2P" _ k(g) segments of length 1/2°" it is on one side of % and

1
nf—mh:A|am—gun

. 11 1 1
> (27 5(g)) 5 o5 / F(x) — =
> x(8)) 5 5p7 ; () =5
_ 1 nle)
16 2D* )~
And we multiply f by 16 to get rid of the -.
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Notes

Here, the f we built is shown in red mapping,
and g is a piece-wise linear mapping shown in
green.

In any of the slice of width 1/2D* , the undimmed
gray part has an area of

1 1720 . 1 11
T RCEH =

The final result on the slide shows that the [;
distance between f and any function which has
a small k is large.



So, considering ReLU MLPs with a single input/output, there exists a network f with
D* layers, and 2D* internal units, such that, for any network g with D layers of sizes
{w@ . WD} since k(g) < 2P Hc?:l w(d).

p L B
||f_g||121—2FHW( ).
d=1

In particular, with g a single hidden layer network

w@)

If — gl > 1— 25—,

To approximate 7 properly, the width W) of g’s hidden layer has to increase
exponentially with f’s depth D*.

This is a simplified variant of results by Telgarsky (2015, 2016).
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Regarding over-fitting, over-parametrizing a deep model often improves test
performance, contrary to what the bias-variance decomposition predicts (Belkin et al.,
2018).

under-parameterized over-parameterized

under-fitting . over-fitting

. Test risk Test risk

% . '&m “classical” “modern”
= = regime interpolating regime
o o g P g reg

N ; .

~ < Training risk Training risk:
sweet spot\:. - _ S~ - . _interpolation threshold
Complexity of ‘H Complexity of H
(a) U-shaped “bias-variance” risk curve (b) “double descent” risk curve

Figure 1: Curves for training risk (dashed line) and test risk (solid line). (a) The classical U-shaped risk curve
arising from the bias-variance trade-off. (b) The double descent risk curve, which incorporates the U-shaped
risk curve (i.e., the “classical” regime) together with the observed behavior from using high complexity
function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The
predictors to the right of the interpolation threshold have zero training risk.

(Belkin et al., 2018)
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Notes

This results shows that can build more “compli-
cated” models by stacking up layers instead of
making a few layers larger.

Surprisingly, those deep architectures reach better
test performance in practice. This seems incon-
sistent with what we have seen with the bias /
variance in lecture 2.3. “Bias-variance dilemma":
deep architectures should over-fit and the perfor-
mance decreases in test (left figure).

In the double descent curve (right picture), after
the model does perfectly well on the training set
(point “interpolation threshold”), the optimiza-
tion of the parameters is entirely driven by the
bias in the model and the regularization mecha-
nism present in the training process (L penalty,
SGD, etc.), and the mapping may get better on
unseen samples. This interpretation may explain
in part why deep networks with billions of param-
eters do so well although trained with a lesser
number of samples.



So we have good reasons to increase depth, but we saw that an important issue then is
to control the amplitude of the gradient, which is tightly related to controlling
activations.

In particular we have to ensure that

e the gradient does not “vanish” (Bengio et al., 1994; Hochreiter et al., 2001),

e gradient amplitude is homogeneous so that all parts of the network train at the
same rate (Glorot and Bengio, 2010),

e the gradient does not vary too unpredictably when the weights change (Balduzzi
et al., 2017).
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Modern techniques change the functional itself instead of trying to improve training
“from the outside” through penalty terms or better optimizers.

Our main concern is to make the gradient descent work, even at the cost of
engineering substantially the class of functions.

An additional issue for training very large architectures is the computational cost, which
often turns out to be the main practical problem.
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