We have motivated the use of a loss with a Bayesian formulation combining the probability of the data given the model and the probability of the model

$$\log \mu_W(w \mid \mathcal{D} = d) = \log \mu_\mathcal{D}(d \mid W = w) + \log \mu_W(w) - \log Z.$$

If μ_W is a Gaussian density with a covariance matrix proportional to the identity, the log-prior $\log \mu_W(w)$ results in a quadratic penalty

$$\lambda \|w\|^2_2.$$

Since this penalty is convex, its sum with a convex functional is convex.

This is called the L_2 regularization, or “weight decay” in the artificial neural network community.
Increasing the λ parameter moves the optimal closer to 0, and away from the optimal for the loss alone.

Since the derivative of $\|x\|_2^2$ is zero at zero, the optimal will never move there if it was not already there.

\[
(x - 1)^2 + \frac{1}{6}(x - 1)^3
\]

\[
(x - 1)^2 + \frac{1}{6}(x - 1)^3 + x^2
\]

\[
(x - 1)^2 + \frac{1}{6}(x - 1)^3 + 3x^2
\]

\[
(x - 1)^2 + \frac{1}{6}(x - 1)^3 + 4x^2
\]

Convnet trained on MNIST with 1,000 samples and a L_2 penalty.

<table>
<thead>
<tr>
<th>λ</th>
<th>Train</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.064</td>
</tr>
<tr>
<td>0.001</td>
<td>0.000</td>
<td>0.063</td>
</tr>
<tr>
<td>0.002</td>
<td>0.000</td>
<td>0.064</td>
</tr>
<tr>
<td>0.004</td>
<td>0.005</td>
<td>0.065</td>
</tr>
<tr>
<td>0.010</td>
<td>0.022</td>
<td>0.075</td>
</tr>
<tr>
<td>0.020</td>
<td>0.048</td>
<td>0.101</td>
</tr>
</tbody>
</table>

output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])
for p in model.parameters():
 loss += lambda_l2 * p.pow(2).sum()
optimizer.zero_grad()
loss.backward()
optimizer.step()
We can apply the exact same scheme with a Laplace prior

\[\mu(w) = \frac{1}{(2b)^D} \exp \left(-\frac{\|w\|_1}{b} \right) \]

\[= \frac{1}{(2b)^D} \exp \left(-\frac{1}{b} \sum_{d=1}^{D} |w_d| \right), \]

which results in a penalty term of the form

\[\lambda \|w\|_1. \]

This is the L_1 regularization. As for the L_2, this penalty is convex, and its sum with a convex functional is convex.

An important property of the L_1 penalty is that, if \mathcal{L} is convex, and

\[w^* = \arg\min_w \mathcal{L}(w) + \lambda \|w\|_1 \]

then

\[\forall d, \left| \frac{\partial \mathcal{L}}{\partial w_d} (w^*) \right| < \lambda \Rightarrow w^*_d = 0. \]
In practice it means that this penalty pushes some of the variables to zero, but contrary to the L_2 penalty they actually move and remain there.

The λ parameter controls the sparsity of the solution.

With the L_1 penalty, the update rule becomes

$$w_{t+1} = w_t - \eta (g_t + \lambda \text{sign}(w_t)),\,$$

where sign is applied per-component. This is almost identical to

$$w'_t = w_t - \eta g_t$$
$$w_{t+1} = w'_t - \eta \lambda \text{sign}(w'_t).$$

This update may overshoot, and result in a component of w'_t strictly on one side of 0, while the same component in w_{t+1} is strictly on the other.

While this is not a problem in principle, since w_t will fluctuate around zero, it can be an issue if the zeroed weights are handled in a specific manner (e.g. sparse coding to reduce memory footprint or computation).
The proximal operator prevents parameters from “crossing zero”, by adapting \(\lambda \) when it is too large

\[
w_t' = w_t - \eta g_t
\]
\[
w_{t+1} = w_t' - \eta \min(\lambda, |w_t'|) \odot \text{sign}(w_t').
\]

where \(\min \) is component-wise, and \(\odot \) is the Hadamard component-wise product.

Increasing the \(\lambda \) parameter moves the optimal closer to 0, and away from the optimal for the loss without penalty.
Convnet trained on MNIST with 1,000 samples and a L_1 penalty.

$$
\begin{array}{|c|c|c|}
\hline
\lambda & \text{Train} & \text{Test} \\
\hline
0.00000 & 0.000 & 0.064 \\
0.00001 & 0.000 & 0.063 \\
0.00002 & 0.000 & 0.067 \\
0.00005 & 0.004 & 0.068 \\
0.00010 & 0.087 & 0.128 \\
0.00020 & 0.057 & 0.101 \\
0.00050 & 0.496 & 0.516 \\
\hline
\end{array}
$$

output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])

optimizer.zero_grad()
loss.backward()
optimizer.step()

with torch.no_grad():
 for p in model.parameters():
 p.sub_(p.sign() * p.abs().clamp(max = lambda_l1))

Penalties on the weights may be useful when dealing with small models and small data-sets and are still standard when data is scarce.

While they have a limited impact for large-scale deep learning, they may still provide the little push needed to beat baselines.