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The PyTorch package torch.optim provides many optimizers.

An optimizer has an internal state to keep quantities such as moving averages,
and operates on an iterator over Parameters.

¢ Values specific to the optimizer can be specified to its constructor, and

e its step method updates the internal state according to the grad attributes
of the Parameters, and updates the latter according to the internal state.
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We implemented the standard SGD as follows

for e in range(nb_epochs):
for b in range(0, train_input.size(0), batch_size):
output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])
model.zero_grad()
loss.backward()
with torch.no_grad():
for p in model.parameters(): p -= eta * p.grad

which can be re-written with the torch.optim package as

optimizer = torch.optim.SGD(model.parameters(), lr = eta)

for e in range(nb_epochs):
for b in range(0, train_input.size(0), batch_size):
output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])
optimizer.zero_grad()
loss.backward()
optimizer.step()

Frangois Fleuret Deep learning / 5.3. PyTorch optimizers 2/8

We have at our disposal many variants of the SGD:

e torch.optim.SGD (momentum, and Nesterov's algorithm),
e torch.optim.Adam

e torch.optim.Adadelta

e torch.optim.Adagrad

e torch.optim.RMSprop

e torch.optim.LBFGS

An optimizer can also operate on several iterators, each corresponding to a
group of Parameters that should be handled similarly. For instance, different
layers may have different learning rates or momentums.
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So to use Adam, with its default setting, we just have to replace in our example

optimizer = optim.SGD(model.parameters(), 1lr = eta)

with

optimizer = optim.Adam(model.parameters(), lr = eta)

ﬁ The learning rate may have to be different if the functional was not
properly scaled.
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An example putting all this together
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We now have the tools to build and train a deep network:

e fully connected layers,
e convolutional layers,
e pooling layers,

e RelLU.
And we have the tools to optimize it:
e Loss,

e back-propagation,

e stochastic gradient descent.

The only piece missing is the policy to initialize the parameters.

PyTorch initializes parameters with default rules when modules are created.
They normalize weights according to the layer sizes (Glorot and Bengio, 2010)

and behave usually very well. We will come back to this.
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class Net(nn.Module):
def __init__(self):
super() .__init__()
self.convl = nn.Conv2d(1, 32, kernel_size = 5)
self.conv2 = nn.Conv2d(32, 64, kernel_size = 5)
self.fcl = nn.Linear (256, 200)
self.fc2 = nn.Linear (200, 10)

def forward(self, x):

x = F.relu(F.max_pool2d(self.convl(x), kernel_size =

x = F.relu(F.max_pool2d(self.conv2(x), kernel_size
x = x.view(x.size(0), -1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
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train_set = torchvision.datasets.MNIST(root = data_dir,

train = True, download = True)
train_input = train_set.data.view(-1, 1, 28, 28).float()
train_targets = train_set.targets

1r, nb_epochs, batch_size = le-1, 10, 100
model = Net()

optimizer = torch.optim.SGD(model.parameters(), lr = 1lr)
criterion = nn.CrossEntropyLoss()

model.to(device)
criterion.to(device)
train_input, train_targets = train_input.to(device), train_targets.to(device)

mu, std = train_input.mean(), train_input.std()
train_input.sub_(mu) .div_(std)

for e in range(nb_epochs):
for input, targets in zip(train_input.split(batch_size),
train_targets.split(batch_size)):

output = model (input)

loss = criterion(output, targets)

optimizer.zero_grad()

loss.backward()

optimizer.step()
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