Deep learning

5.3. PyTorch optimizers

Francois Fleuret
https://fleuret.org/dlc/
Dec 20, 2020

M
1
"

1 UNIVERSITE
-’lelaP DE GENEVE

RESEARCH INSTITUTE

The PyTorch package torch.optim provides many optimizers.

An optimizer has an internal state to keep quantities such as moving averages,
and operates on an iterator over Parameters.

¢ Values specific to the optimizer can be specified to its constructor, and

e its step method updates the internal state according to the grad attributes
of the Parameters, and updates the latter according to the internal state.

Frangois Fleuret Deep learning / 5.3. PyTorch optimizers

1/8


https://fleuret.org/dlc/

We implemented the standard SGD as follows

for e in range(nb_epochs):
for b in range(0, train_input.size(0), batch_size):
output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])
model.zero_grad()
loss.backward()
with torch.no_grad():
for p in model.parameters(): p -= eta * p.grad

which can be re-written with the torch.optim package as

optimizer = torch.optim.SGD(model.parameters(), lr = eta)

for e in range(nb_epochs):
for b in range(0, train_input.size(0), batch_size):
output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])
optimizer.zero_grad()
loss.backward()
optimizer.step()

Frangois Fleuret Deep learning / 5.3. PyTorch optimizers 2/8

We have at our disposal many variants of the SGD:

e torch.optim.SGD (momentum, and Nesterov's algorithm),
e torch.optim.Adam

e torch.optim.Adadelta

e torch.optim.Adagrad

e torch.optim.RMSprop

e torch.optim.LBFGS

An optimizer can also operate on several iterators, each corresponding to a
group of Parameters that should be handled similarly. For instance, different
layers may have different learning rates or momentums.

Francois Fleuret Deep learning / 5.3. PyTorch optimizers 3/8



Francois Fleuret

Francois Fleuret

So to use Adam, with its default setting, we just have to replace in our example

optimizer = optim.SGD(model.parameters(), 1lr = eta)

with

optimizer = optim.Adam(model.parameters(), lr = eta)

ﬁ The learning rate may have to be different if the functional was not
properly scaled.

Deep learning / 5.3. PyTorch optimizers

An example putting all this together

Deep learning / 5.3. PyTorch optimizers

4/8

5/8



We now have the tools to build and train a deep network:

e fully connected layers,
e convolutional layers,
e pooling layers,

e RelLU.
And we have the tools to optimize it:
e Loss,

e back-propagation,

e stochastic gradient descent.

The only piece missing is the policy to initialize the parameters.

PyTorch initializes parameters with default rules when modules are created.
They normalize weights according to the layer sizes (Glorot and Bengio, 2010)

and behave usually very well. We will come back to this.

Frangois Fleuret Deep learning / 5.3. PyTorch optimizers

class Net(nn.Module):
def __init__(self):
super() .__init__()
self.convl = nn.Conv2d(1, 32, kernel_size = 5)
self.conv2 = nn.Conv2d(32, 64, kernel_size = 5)
self.fcl = nn.Linear (256, 200)
self.fc2 = nn.Linear (200, 10)

def forward(self, x):

x = F.relu(F.max_pool2d(self.convl(x), kernel_size =

x = F.relu(F.max_pool2d(self.conv2(x), kernel_size
x = x.view(x.size(0), -1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
Frangois Fleuret Deep learning / 5.3. PyTorch optimizers

6/8

7/8



train_set = torchvision.datasets.MNIST(root = data_dir,

train = True, download = True)
train_input = train_set.data.view(-1, 1, 28, 28).float()
train_targets = train_set.targets

1r, nb_epochs, batch_size = le-1, 10, 100
model = Net()

optimizer = torch.optim.SGD(model.parameters(), lr = 1lr)
criterion = nn.CrossEntropyLoss()

model.to(device)
criterion.to(device)
train_input, train_targets = train_input.to(device), train_targets.to(device)

mu, std = train_input.mean(), train_input.std()
train_input.sub_(mu) .div_(std)

for e in range(nb_epochs):
for input, targets in zip(train_input.split(batch_size),
train_targets.split(batch_size)):

output = model (input)

loss = criterion(output, targets)

optimizer.zero_grad()

loss.backward()

optimizer.step()

Francois Fleuret Deep learning / 5.3. PyTorch optimizers

References

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward
neural networks. In International Conference on Artificial Intelligence and Statistics

(AISTATS), 2010.




	An example putting all this together

