We can generalize an MLP

\[x \times w^{(1)} + b^{(1)} \sigma \times w^{(2)} + b^{(2)} \sigma f(x) \]

to an arbitrary “Directed Acyclic Graph” (DAG) of operators
Forward pass

\[
\begin{align*}
\phi'(1) & \xrightarrow{w(1)} x(1) \\
\phi'(2) & \xrightarrow{w(2)} x(2) \\
\phi'(3) & \xrightarrow{f(x)} x(3)
\end{align*}
\]

\[
\begin{align*}
x(0) &= x \\
x(1) &= \phi(1)(x(0), w(1)) \\
x(2) &= \phi(2)(x(0), x(1), w(2)) \\
f(x) &= x(3) = \phi(3)(x(1), x(2), w(1))
\end{align*}
\]

If \((a_1, \ldots, a_Q) = \phi(b_1, \ldots, b_R)\), we use the notation

\[
\begin{bmatrix}
\frac{\partial a}{\partial b_1} \\
\frac{\partial a}{\partial b_1} \\
\vdots \\
\frac{\partial a}{\partial b_R}
\end{bmatrix} = J_{\phi} =
\begin{bmatrix}
\frac{\partial a_1}{\partial b_1} & \cdots & \frac{\partial a_1}{\partial b_R} \\
\vdots & \ddots & \vdots \\
\frac{\partial a_Q}{\partial b_1} & \cdots & \frac{\partial a_Q}{\partial b_R}
\end{bmatrix}.
\]

It does not specify at which point this is computed, but it will always be for the forward-pass activations.

Also, if \((a_1, \ldots, a_Q) = \phi(b_1, \ldots, b_R, c_1, \ldots, c_S)\), we use

\[
\begin{bmatrix}
\frac{\partial a}{\partial c_1} \\
\frac{\partial a}{\partial c_1} \\
\vdots \\
\frac{\partial a}{\partial c_S}
\end{bmatrix} = J_{\phi|c} =
\begin{bmatrix}
\frac{\partial a_1}{\partial c_1} & \cdots & \frac{\partial a_1}{\partial c_S} \\
\vdots & \ddots & \vdots \\
\frac{\partial a_Q}{\partial c_1} & \cdots & \frac{\partial a_Q}{\partial c_S}
\end{bmatrix}.
\]
Backward pass, derivatives w.r.t activations

\[
\begin{bmatrix}
\frac{\partial \ell}{\partial x(2)} \\
\frac{\partial \ell}{\partial x(1)} \\
\frac{\partial \ell}{\partial x(0)}
\end{bmatrix} =
\begin{bmatrix}
\frac{\partial x(3)}{\partial x(2)} \\
\frac{\partial x(2)}{\partial x(1)} \\
\frac{\partial x(1)}{\partial x(0)}
\end{bmatrix}
\begin{bmatrix}
\frac{\partial \ell}{\partial x(3)} \\
\frac{\partial \ell}{\partial x(2)} \\
\frac{\partial \ell}{\partial x(1)}
\end{bmatrix} =
J_{\phi(3)}|_{x(2)}
\begin{bmatrix}
\frac{\partial \ell}{\partial x(3)} \\
\frac{\partial \ell}{\partial x(2)} \\
\frac{\partial \ell}{\partial x(1)}
\end{bmatrix} +
J_{\phi(3)}|_{x(1)}
\begin{bmatrix}
\frac{\partial \ell}{\partial x(2)} \\
\frac{\partial \ell}{\partial x(1)} \\
\frac{\partial \ell}{\partial x(0)}
\end{bmatrix}
\]

Backward pass, derivatives w.r.t parameters

\[
\begin{bmatrix}
\frac{\partial \ell}{\partial w(1)} \\
\frac{\partial \ell}{\partial w(2)}
\end{bmatrix} =
\begin{bmatrix}
\frac{\partial x(1)}{\partial w(1)} \\
\frac{\partial x(2)}{\partial w(2)}
\end{bmatrix}
\begin{bmatrix}
\frac{\partial \ell}{\partial x(1)} \\
\frac{\partial \ell}{\partial x(2)}
\end{bmatrix} =
\begin{bmatrix}
\frac{\partial \ell}{\partial x(1)}+ \frac{\partial \ell}{\partial x(2)}
\end{bmatrix} =
J_{\phi(1)}|_{w(1)}
\begin{bmatrix}
\frac{\partial \ell}{\partial x(1)} \\
\frac{\partial \ell}{\partial x(2)}
\end{bmatrix} +
J_{\phi(2)}|_{w(1)}
\begin{bmatrix}
\frac{\partial \ell}{\partial x(3)} \\
\frac{\partial \ell}{\partial x(2)}
\end{bmatrix}
\]

François Fleuret

Deep learning / 4.1. DAG networks
So if we have a library of "tensor operators", and implementations of

\[(x_1, \ldots, x_d, w) \mapsto \phi(x_1, \ldots, x_d; w)\]
\[\forall c, (x_1, \ldots, x_d, w) \mapsto J_{\phi|_c} (x_1, \ldots, x_d; w)\]
\[(x_1, \ldots, x_d, w) \mapsto J_{\phi|_w} (x_1, \ldots, x_d; w) \]

we can build an arbitrary directed acyclic graph with these operators at the nodes, compute the response of the resulting mapping, and compute its gradient with back-prop.

Writing from scratch a large neural network is complex and error-prone.

Multiple frameworks provide libraries of tensor operators and mechanisms to combine them into DAGs and automatically differentiate them.

<table>
<thead>
<tr>
<th>Language(s)</th>
<th>License</th>
<th>Main backer</th>
</tr>
</thead>
<tbody>
<tr>
<td>PyTorch</td>
<td>Python</td>
<td>BSD</td>
</tr>
<tr>
<td>Caffe2</td>
<td>C++, Python</td>
<td>Apache</td>
</tr>
<tr>
<td>TensorFlow</td>
<td>Python, C++</td>
<td>Apache</td>
</tr>
<tr>
<td>JAX</td>
<td>Python</td>
<td>Apache</td>
</tr>
<tr>
<td>MXNet</td>
<td>Python, C++, R, Scala</td>
<td>Apache</td>
</tr>
<tr>
<td>CNTK</td>
<td>Python, C++</td>
<td>MIT</td>
</tr>
<tr>
<td>Torch</td>
<td>Lua</td>
<td>BSD</td>
</tr>
<tr>
<td>Theano</td>
<td>Python</td>
<td>BSD</td>
</tr>
<tr>
<td>Caffe</td>
<td>C++</td>
<td>BSD 2 clauses</td>
</tr>
</tbody>
</table>

One approach is to define the nodes and edges of such a DAG statically (Torch, TensorFlow, Caffe, Theano, etc.)
In TensorFlow, to run a forward/backward pass on

\[
\phi^{(1)}(x^{(0)}; W^{(1)}) = W^{(1)}x^{(0)} \\
\phi^{(2)}(x^{(0)}, x^{(1)}; W^{(2)}) = x^{(0)} + W^{(2)}x^{(1)} \\
\phi^{(3)}(x^{(1)}, x^{(2)}; W^{(1)}) = W^{(1)}(x^{(1)} + x^{(2)})
\]

\[
w_1 = \text{tf.Variable}(\text{tf.random_normal}([5, 5])) \\
w_2 = \text{tf.Variable}(\text{tf.random_normal}([5, 5])) \\
x = \text{tf.Variable}(\text{tf.random_normal}([5, 1])) \\
x_0 = x \\
x_1 = \text{tf.matmul}(w_1, x_0) \\
x_2 = x_0 + \text{tf.matmul}(w_2, x_1) \\
x_3 = \text{tf.matmul}(w_1, x_1 + x_2) \\
q = \text{tf.norm}(x_3)
\]

\[
gw_1, gw_2 = \text{tf.gradients}(q, [w_1, w_2])
\]

with tf.Session() as sess:
 sess.run(tf.global_variables_initializer())
 _gw1, _gw2 = sess.run([gw1, gw2])

Weight sharing
In our generalized DAG formulation, we have in particular implicitly allowed the same parameters to modulate different parts of the processing.

For instance $w^{(1)}$ in our example parametrizes both $\phi^{(1)}$ and $\phi^{(3)}$.

This is called \textit{weight sharing}.

Weight sharing allows in particular to build \textit{siamese networks} where a full sub-network is replicated several times.